Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger

  • Amin Shahsavar
  • Ali Godini
  • Pouyan Talebizadeh Sardari
  • Davood ToghraieEmail author
  • Hamzeh Salehipour


The objective of this study is to assess the hydrothermal performance of a non-Newtonian hybrid nanofluid with temperature-dependent thermal conductivity and viscosity compared with a Newtonian hybrid nanofluid with constant thermophysical properties. A counter-current double-pipe mini-channel heat exchanger is studied to analyze the effects of the hybrid nanofluid. The nanofluid is employed as the coolant in the tube side, while the hot water flows in the annulus side. Two different nanoparticles including tetramethylammonium hydroxide-coated Fe3O4 (magnetite) nanoparticles and gum arabic-coated carbon nanotubes are used to prepare the water-based hybrid nanofluid. The results demonstrated that the non-Newtonian hybrid nanofluid always has a higher heat transfer rate, overall heat transfer coefficient, and effectiveness than those of the Newtonian hybrid nanofluid, while the opposite is true for the pressure drop, pumping power, and performance evaluation criterion. Supposing that the Fe3O4-carbon nanotube/water hybrid nanofluid is a Newtonian fluid with constant thermal conductivity and viscosity, there leads to large error in the computation of pressure drop (1.5–9.71%), pumping power (1.5–9.71%), and performance evaluation criterion (18.24–19.60%), whereas the errors in the computation of heat transfer rate, overall heat transfer coefficient, and effectiveness are not considerable (less than 2.91%).


Non-Newtonian hybrid nanofluid Double-pipe heat exchanger Magnetite Carbon nanotube Convective heat transfer 

List of symbols


Internal tube surface area (m2)


Minimum heat capacity rate (W K−1)


Specific heat capacity (J kg−1 K−1)


Hydraulic diameter (m)


Friction factor


Convective heat transfer coefficient (W m−2 K−1)


Thermal conductivity (W m−1 K−1)


Length (m)


Mass flow rate (kg s−1)


Nusselt number


Performance evaluation criterion


Pressure (Pa)


Heat transfer rate (W)


Reynolds number


Inlet radius (m)


Outlet radius (m)


Temperature (K)


Logarithmic mean temperature difference (K)


Overall heat transfer coefficient (W m−2 K−1)


Inlet velocity (m s−1)


Velocity (m s−1)


Volumetric flow rate (m3 s−1)


Pumping power (W)

Greek symbols


Heat exchanger effectiveness


Dynamic viscosity (Pa s)


Density (kg m−3)


Volume concentration of nanoparticles (%)



Carbon nanotube



















  1. 1.
    Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers. Appl Therm Eng. 2017;110:1075–90.CrossRefGoogle Scholar
  2. 2.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018:1–24.Google Scholar
  3. 3.
    Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.CrossRefGoogle Scholar
  4. 4.
    Choi S, Estman J. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995;231:99–106.Google Scholar
  5. 5.
    Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E. 2017;93:179–89.CrossRefGoogle Scholar
  6. 6.
    Maddah H, Alizadeh M, Ghasemi N, Alwi SRW. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf. 2014;78:1042–54.CrossRefGoogle Scholar
  7. 7.
    Mousavi SV, Sheikholeslami M, Gerdroodbary MB. The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem Eng Res Des. 2016;113:112–24.CrossRefGoogle Scholar
  8. 8.
    Saeedan M, Nazar ARS, Abbasi Y, Karimi R. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube. Appl Therm Eng. 2016;100:721–9.CrossRefGoogle Scholar
  9. 9.
    Sarafraz M, Hormozi F, Nikkhah V. Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Exp Therm Fluid Sci. 2016;78:41–9.CrossRefGoogle Scholar
  10. 10.
    Kumar NR, Bhramara P, Sundar LS, Singh MK, Sousa AC. Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp Therm Fluid Sci. 2017;85:331–43.CrossRefGoogle Scholar
  11. 11.
    Hussein AM. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Therm Fluid Sci. 2017;88:37–45.CrossRefGoogle Scholar
  12. 12.
    Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.CrossRefGoogle Scholar
  13. 13.
    Esfe MH, Esfandeh S, Afrand M, Rejvani M, Rostamian SH. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications. Appl Therm Eng. 2018;133:452–63.CrossRefGoogle Scholar
  14. 14.
    Shahsavar A, Saghafian M, Salimpour M, Shafii M. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.CrossRefGoogle Scholar
  15. 15.
    Theres Baby T, Sundara R. Surfactant free magnetic nanofluids based on core-shell type nanoparticle decorated multiwalled carbon nanotubes. J Appl Phys. 2011;110:064325.CrossRefGoogle Scholar
  16. 16.
    Felicia LJ, Philip J. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys Rev E. 2014;89:022310.CrossRefGoogle Scholar
  17. 17.
    Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.CrossRefGoogle Scholar
  18. 18.
    Shahsavar A, Saghafian M, Salimpour M, Shafii M. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. Exp Therm Fluid Sci. 2016;76:1–11.CrossRefGoogle Scholar
  19. 19.
    Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;76:171–7.CrossRefGoogle Scholar
  20. 20.
    Hemmat Esfe M, Hassani Ahangar MR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.CrossRefGoogle Scholar
  21. 21.
    Sandeep N, Malvandi A. Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles. Adv Powder Technol. 2016;27:2448–56.CrossRefGoogle Scholar
  22. 22.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.CrossRefGoogle Scholar
  23. 23.
    Berger P, Adelman NB, Beckman KJ, Campbell DJ, Ellis AB, Lisensky GC. Preparation and properties of an aqueous ferrofluid. J Chem Educ. 1999;76:943.CrossRefGoogle Scholar
  24. 24.
    Shahsavar A, Bahiraei M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol. 2017;318:441–50.CrossRefGoogle Scholar
  25. 25.
    Bahiraei M, Berahmand M, Shahsavar A. Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Appl Therm Eng. 2017;125:1083–93.CrossRefGoogle Scholar
  26. 26.
    Bahiraei M, Godini A, Shahsavar A. Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid. J Taiwan Inst Chem Eng. 2018;84:149–61.CrossRefGoogle Scholar
  27. 27.
    Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.CrossRefGoogle Scholar
  28. 28.
    Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53:334–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Amin Shahsavar
    • 1
  • Ali Godini
    • 1
  • Pouyan Talebizadeh Sardari
    • 2
  • Davood Toghraie
    • 3
    Email author
  • Hamzeh Salehipour
    • 4
  1. 1.Department of Mechanical EngineeringKermanshah University of TechnologyKermanshahIran
  2. 2.Fluids and Thermal Engineering Research Group, Faculty of EngineeringThe University of NottinghamNottinghamUK
  3. 3.Department of Mechanical EngineeringKhomeinishahr Branch, Islamic Azad UniversityIsfahanIran
  4. 4.Department of Mechanical EngineeringIlam UniversityIlamIran

Personalised recommendations