Synthesis, structure and thermal investigation of a new volatile iridium (I) complex with cyclooctadiene and methoxy-substituted β-diketonate

  • Kseniya I. Karakovskaya
  • Evgeniia S. VikulovaEmail author
  • Igor Yu. Ilyin
  • Dmitry A. Piryazev
  • Sergey V. Sysoev
  • Natalia B. Morozova


The presence of donor groups in volatile metal compounds is interesting both in the thermochemical aspect and as the possibility to form hetero-metallic precursors by a reaction with an acceptor-capable component. Following this trend, the present work deals with synthesis and detailed structural and thermochemical investigation of a first iridium volatile complex with donor-atom-functionalized β-diketonate ligand, namely [Ir(cod)(zis)] (cod = cyclooctadiene-1,5, zis = 2-methoxy-2,6,6-trimethylheptanedionato-3,5). The compound has been characterized by elemental analysis, IR- and NMR-spectroscopy. According to single-crystal X-ray diffraction, the crystal structure of the complex is formed by layered-packed isolated molecules. Within the molecules, the coordination site IrO2C′2 (C′ is the center of C=C bond of the cod-ligand) is implemented to form distorted planar square metal coordination environment with Ir–O and Ir–C′ distances being (2.034–2.046) and (1.965–1.978) Å, respectively. TG–DTA study shows that the compound is characterized by extremely low melting point (378 K) and a high thermal stability during evaporation. Then, the temperature dependencies of saturated vapor pressures over both the solid and liquid compounds have been measured by the flow (transpiration) method at (353–376) K and (381–403) K, respectively, giving the molar enthalpy and entropy of sublimation and evaporation processes. In addition, the comparison of the structural and thermal data with the ones for the related [Ir(cod)(L)] complexes containing symmetric alkyl terminal substituents in β-diketonate ligand L has been performed and, thereby, the donor group influence on the characteristics of this type of volatile compounds has been revealed.


Iridium Volatile precursor Crystal structure Thermal analysis Vapor pressure 



The reported study was funded by RFBR and “NID” Foundation according to the research project No. 17-33-80100_mol_ev_a.


  1. 1.
    Tiitta M, Niinistou L. Volatile metal β-Diketonates: ALE and CVD precursors for electroluminescent device thin films. Chem Vap Depos. 1997;3:167–82.CrossRefGoogle Scholar
  2. 2.
    Igumenov IK, Basova TV, Belosludov VR. Volatile precursors for films deposition: vapor pressure, structure and thermodynamics. In: Mizutani T, editor. Application of thermodynamics to biological and materials science. Rijeka: InTech; 2011. p. 521–46.Google Scholar
  3. 3.
    Fahlman BD, Barron AR. Substituent effects on the volatility of metal β-diketonates. Adv Mater Opt Electr. 2000;10:223–32.CrossRefGoogle Scholar
  4. 4.
    Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014;17:236–46.CrossRefGoogle Scholar
  5. 5.
    Mishra S, Daniele S. Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem Rev. 2015;115:8379–448.CrossRefGoogle Scholar
  6. 6.
    Fang G, Xu L, Cao Y, Li A. Theoretical design and computational screening of precursors for atomic layer deposition. Coord Chem Rev. 2016;322:94–103.CrossRefGoogle Scholar
  7. 7.
    Krisyuk VV, Shubin YV, Senocq F, Turgambaeva AE, Duguet T, Igumenov IK, Vahlas C. Chemical vapor deposition of Pd/Cu alloy films from a new single source precursor. J Cryst Growth. 2015;414:130–4.CrossRefGoogle Scholar
  8. 8.
    Krisyuk VV, Tkachev SV, Baidina IA, Korolkov IV, Turgambaeva AE, Igumenov IK. Volatile Pd–Pb and Cu–Pb heterometallic complexes: structure, properties, and trans-to-cis isomerization under cocrystallization of Pd and Cu β-diketonates with Pb hexafluoroacetylacetonate. J Coord Chem. 2015;68:1890–902.CrossRefGoogle Scholar
  9. 9.
    Krisyuk VV, Baidina IA, Turgambaeva AE, Nadolinny VA, Kozlova SG, Korolkov IV, Duguet T, Vahlas C, Igumenov IK. Volatile heterobimetallic complexes from PdII and CuII β-diketonates: structure, magnetic anisotropy, and thermal properties related to the chemical vapor deposition of Cu–Pd thin films. ChemPlusChem. 2015;80:1457–64.CrossRefGoogle Scholar
  10. 10.
    Krisyuk VV, Sysoev SV, Turgambaeva AE, Nazarova AA, Koretskaya TP, Igumenov IK, Morozova NB. Thermal behavior of methoxy-substituted Pd and Cu β-diketonates and their heterobimetallic complex. J Therm Anal Calorim. 2017;130:1105–10.CrossRefGoogle Scholar
  11. 11.
    Krisyuk VV, Baidina IA, Kryuchkova NA, Logvinenko VA, Plyusnin PE, Korolkov IV, Zharkova GI, Turgambaeva AE, Igumenov IK. Volatile heterometallics: structural diversity of Pd–Pb β-diketonates and correlation with thermal properties. Dalton Trans. 2017;46:12245–56.CrossRefGoogle Scholar
  12. 12.
    Krisyuk VV, Baidina IA, Romanenko GV, Korolkov IV, Koretskaya TP, Petrova NI, Turgambaeva AE. Structure and thermal properties of heterometallic complexes for chemical vapor deposition of Cu–Pd films. J Struct Chem. 2017;58:1522–9.CrossRefGoogle Scholar
  13. 13.
    Baidina IA, Gromilov SA, Zharkova GI. Crystal and molecular structures of cis-bis-(1,1,1-trifluoro-5-methoxy-5-methyl-2,4-hexanedionato)palladium (II) and -platinum (II). J Struct Chem. 1999;40:633–9.CrossRefGoogle Scholar
  14. 14.
    Vasilyev VY, Morozova NB, Basova TV, Igumenov IK, Hassan A. Chemical vapour deposition of Ir-based coatings: chemistry, processes and applications. RSC Adv. 2015;5:32034–63.CrossRefGoogle Scholar
  15. 15.
    Igumenov IK, Semyannikov PP, Belaya SV, Zanina AS, Shergina SI, Sokolov IE. New volatile β-diketonate complexes of barium with sterically hindered methoxy-β-diketones as precursors for CVD. Polyhedron. 1996;15:4521–30.CrossRefGoogle Scholar
  16. 16.
    Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.CrossRefGoogle Scholar
  17. 17.
    Vikulova ES, Ilyin IY, Karakovskaya KI, Piryazev DA, Turgambaeva AE, Morozova NB. Volatile iridium (I) complexes with β-diketones and cyclooctadiene: syntheses, structures and thermal properties. J Coord Chem. 2016;69:2281–90.CrossRefGoogle Scholar
  18. 18.
    Bespyatov MA, Kuzin TM, Naumov VN, Vikulova ES, Ilyin IY, Morozova NB, Gelfond NV. Low-temperature heat capacity of Ir(C5H7O2)(C8H12). J Chem Therm. 2016;99:70–4.CrossRefGoogle Scholar
  19. 19.
    Bruker, APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, 2004Google Scholar
  20. 20.
    Sheldrick GM. A short history of SHELX. Acta Cryst A. 2008;64:112–22.CrossRefGoogle Scholar
  21. 21.
    Vikulova ES, Cherkasov SA, Nikolaeva NS, Smolentsev AI, Sysoev SV, Morozova NB. Thermal behavior of volatile palladium(II) complexes with tetradentate Schiff bases containing propylene-diimine bridge. J Therm Anal Calorim. 2018. Scholar
  22. 22.
    Zherikova KV, Zelenina LN, Pishchur DP, Emel’yanenko VN, Shoifet E, Schick C, Verevkin SP, Gelfond NV, Morozova NB. Thermochemical study of rhodium (III) acetylacetonate. J Chem Therm. 2016;102:442–50.CrossRefGoogle Scholar
  23. 23.
    Volkova TV, Blokhina SV, Ryzhakov AM, Sharapova AV, Ol’khovich MV, Perlovich GL. Vapor pressure and sublimation thermodynamics of aminobenzoic acid, nicotinic acid, and related amido-derivatives. J Therm Anal Calorim. 2016;123:841–9.CrossRefGoogle Scholar
  24. 24.
    Gerfin T, Hälg WJ, Atamny F, Dahmen KH. Growth of iridium films by metal organic chemical vapour deposition. Thin Solid Films. 1994;241:352–5.CrossRefGoogle Scholar
  25. 25.
    Xu C, Baum TH, Rheingold AL. New precursors for chemical vapor deposition of iridium. Chem Mater. 1998;10:2329–31.CrossRefGoogle Scholar
  26. 26.
    Krisyuk VV, Baidina IA, Turgambaeva AE, Korolkov IV, Koretskaya TP, Igumenov IK. Structure and thermal properties of Pb(II) complex with functionalized β-diketonate. J Organomet Chem. 2016;819:115–9.CrossRefGoogle Scholar
  27. 27.
    Krasnov PO, Mikhaleva NS, Kuzubov AA, Nikolaeva NS, Zharkova GI, Sheludyakova LA, Morozova NB, Basova TV. Prediction of the relative probability and the kinetic parameters of bonds breakage in the molecules of palladium MOCVD precursors. J Mol Struct. 2017;1139:269–74.CrossRefGoogle Scholar
  28. 28.
    Tucker PA. Acetylacetonato(1,5-cyclooctadiene)iridium (I). Acta Cryst B. 1981;37:1113–5.CrossRefGoogle Scholar
  29. 29.
    Zharkova GI, Stabnikov PA, Sysoev SA, Igumenov IK. Volatility and crystal lattice energy of palladium(II) chelates. J Struct Chem. 2005;46:320–7.CrossRefGoogle Scholar
  30. 30.
    Nandurkar NS, Bhanushali MJ, Bhor MD, Bhanage BM. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): an efficient catalyst for regioselective C-2 arylation of heterocycles. Tetrahedron Lett. 2008;49:1045–8.CrossRefGoogle Scholar
  31. 31.
    Utriainen M, Kröger-Laukkanen M, Johansson LS, Niinistö L. Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac)2 (M = Ni, Cu, Pt) precursors. Appl Surf Sci. 2000;157:151–8.CrossRefGoogle Scholar
  32. 32.
    Purecha VH, Nandurkar NS, Bhanage BM, Nagarkar JM. Copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed synthesis of N-substituted ferrocenes. Tetrahedron Lett. 2008;49:1384–7.CrossRefGoogle Scholar
  33. 33.
    Temple D, Reisman A. Chemical vapor deposition of copper from copper(II) hexafluoroacetylacetonate. J Electrochem Soc. 1989;136:3525–9.CrossRefGoogle Scholar
  34. 34.
    Colominas C, Lau KH, Hildenbrand DL, Crouch-Baker S, Sanjurjo A. Vapor pressures of the copper and yttrium β-diketonate MOCVD precursors. J Chem Eng Data. 2001;46:446–50.CrossRefGoogle Scholar
  35. 35.
    Zharkova GI, Stabnikov PA, Grankin VM, Semyannikov PP, Igumenov IK. Palladium (II) β-diketonates: volatility and energy of the crystal lattice. Russ J Coord Chem. 2000;26:576–81.Google Scholar
  36. 36.
    Morozova NB, Semyannikov PP, Trubin SV, Stabnikov PP, Bessonov AA, Zherikova KV, Igumenov IK. Vapor pressure of some volatile iridium(I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. J Therm Anal Calorim. 2009;96:261–6.CrossRefGoogle Scholar
  37. 37.
    Vikulova ES, Karakovskaya KI, Ilyin IYu., Zelenina LN, Sysoev SV, Morozova NB. Thermodynamic study of volatile iridium (I) complexes with 1,5-cyclooctadiene and acetylacetonato derivatives: effect of (O,O) and (O,N) coordination sites. J Chem Therm. 2019 (In press).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation

Personalised recommendations