Thermochemical investigation of perspective MOCVD precursor of MgO functional layers

  • Evgeniia S. VikulovaEmail author
  • Kseniya V. Zherikova
  • Sergey V. Sysoev
  • Asiya E. Turgambaeva
  • Sergey V. Trubin
  • Natalia B. Morozova
  • Igor K. Igumenov


This paper presents a reliable and useful thermochemical information on a mixed-ligand magnesium complex with trifluoroacetylacetonate (tfac) and N,N,N′,N′-tetramethylethylenediamine (tmeda), Mg(tmeda)(tfac)2, as low melting and highly volatile precursor for metal–organic chemical vapor deposition. New vapor pressure data for sublimation and vaporization processes were obtained by Knudsen effusion and transpiration methods, respectively, giving the corresponding molar enthalpies and entropies: ∆subH328.0 = 106.2 ± 3.1 kJ mol−1 and ∆sub328.0 = 224.8 ± 9.6 J K−1 mol−1, ∆vapH385.5 = 71.5 ± 1.4 kJ mol−1 and ∆vap385.5 = 131.6 ± 3.8 J K−1 mol−1. Based upon these new results, the sublimation data obtained previously by transpiration method were re-treated giving the following thermodynamic characteristics of sublimation: ∆subH345.5 = 106.4 ± 1.0 kJ mol−1 and ∆sub345.5 = 227.4 ± 2.8 J K−1 mol−1. The thermal behavior of the precursor vapor on the heated surface in vacuum was investigated by in situ mass spectrometry in the temperature range (353–773) K. A two-step dissociation of the complex molecule was established, while no complete decomposition to form the inorganic phase was observed without reagent gases. Thermodynamic simulation of the solid phase formation from the gaseous mixture of the precursor and oxygen or water as co-reagents in Mg–O–F–C–N–H system was carried out within wide range of the deposition temperature, total pressure and reagent molar ratio in order to determine the conditions of obtaining pure MgO films.


Magnesium MOCVD precursor Vapor thermolysis Vapor pressure Transpiration method Knudsen effusion method 



The mass spectrometric investigation and thermodynamic simulation have been carried out under the RFBR funding according to the research Project No. 18-08-01105_a.

Supplementary material

10973_2018_7991_MOESM1_ESM.doc (92 kb)
Supplementary material 1 (DOC 92 kb)


  1. 1.
    Boo JH, Lee SB, Yu KS, Koh W, Kim Y. Growth of magnesium oxide thin films using single molecular precursors by metal–organic chemical vapor deposition. Thin Solid Films. 1999;341:63–7.CrossRefGoogle Scholar
  2. 2.
    Matthews JS, Just O, Obi-Johnson B, Rees WS. CVD of MgO from a Mg(β-ketoiminate)2: preparation, characterization, and utilization of an intramolecularly stabilized, highly volatile, thermally robust precursor. Chem Vap Depos. 2000;6:129–32.CrossRefGoogle Scholar
  3. 3.
    Davies HO, Jones AC, Leedham TJ, Crosbie MJ, Wright PJ, Boag NM, Thompson JR. Synthesis and structural characterization of a novel magnesium β-diketonatoalkoxide complex: a new precursor for the MOCVD of MgO. Chem Vap Depos. 2000;6:71–5.CrossRefGoogle Scholar
  4. 4.
    Hatanpää T, Kansikas J, Mutikainen I, Leskelä M. Ancillary ligand effect on the properties of “Mg(thd)2” and crystal structures of [Mg(thd)2(ethylenediamine)]2, [Mg(thd)2(tmeda)], and [Mg(thd)2(trien)]. Inorg Chem. 2001;40:788–94.CrossRefGoogle Scholar
  5. 5.
    Hill MR, Jones AW, Russell JJ, Roberts NK, Lamb RN. Dialkylcarbamato magnesium cluster complexes: precursors to the single-source chemical vapour deposition of high quality MgO thin films. J Mater Chem. 2004;14:3198–202.CrossRefGoogle Scholar
  6. 6.
    Wang L, Yang Y, Ni J, Stern CL, Marks TJ. Synthesis and characterization of low-melting, highly volatile magnesium MOCVD precursors and their implementation in MgO thin film growth. Chem Mater. 2005;17:5697–704.CrossRefGoogle Scholar
  7. 7.
    Maria M, Selvakumar J, Raghunathan VS, Nagaraja KS. Role of thermal stability and vapor pressure of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)magnesium(II) and its triamine adduct in producing magnesium oxide thin film using a plasma-assisted LICVD process. Surf Coat Technol. 2009;204:222–7.CrossRefGoogle Scholar
  8. 8.
    Kim DY, Girolami GS. Highly volatile magnesium complexes with the aminodiboranate anion, a new chelating borohydride. Synthesis and characterization of Mg(H3BNMe2BH3)2 and related compounds. Inorg Chem. 2010;49:4942–8.CrossRefGoogle Scholar
  9. 9.
    Hatanpää T, Ritala M, Leskelä M. Precursors as enablers of ALD technology: contributions from University of Helsinki. Coord Chem Rev. 2013;257:3297–322.CrossRefGoogle Scholar
  10. 10.
    Kim HS, George SM, Park BK, Son SU, Kim CG, Chung TM. New heteroleptic magnesium complexes for MgO thin film application. Dalton Trans. 2015;44:2103–9.CrossRefGoogle Scholar
  11. 11.
    Koponen SE, Gordon PG, Barry ST. Principles of precursor design for vapour deposition methods. Polyhedron. 2016;108:59–66.CrossRefGoogle Scholar
  12. 12.
    Mishra S, Daniele S. Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem Rev. 2015;115:8379–448.CrossRefGoogle Scholar
  13. 13.
    Turgambaeva AE, Bykov AF, Igumenov IK. Mass spectrometric study of copper(II) β-diketonates vapour thermolysis mechanism and kinetics. J Phys IV. 1995;5:C5-221–8.Google Scholar
  14. 14.
    Edleman NL, Wang A, Belot JA, Metz AW, Babcock JR, Kawaoka AM, Ni J, Metz MV, Flaschenriem CJ, Stern CL, Liable-Sands LM, Rheingold AL, Markworth PR, Chang RPH, Chudzik MP, Kannewurf CR, Marks TJ. Synthesis and characterization of volatile, fluorine-free β-ketoiminate lanthanide MOCVD precursors and their implementation in low-temperature growth of epitaxial CeO2 buffer layers for superconducting electronics. Inorg Chem. 2002;41:5005–23.CrossRefGoogle Scholar
  15. 15.
    Vikulova ES, Zherikova KV, Korolkov IV, Zelenina LN, Chusova TP, Sysoev SV, Alferova NI, Morozova NB, Igumenov IK. Thermal properties of mixed-ligand magnesium complexes with beta-diketonates and diamimes as potential MOCVD precursors. J Therm Anal Calorim. 2014;118:849–56.CrossRefGoogle Scholar
  16. 16.
    Kuratieva NV, Vikulova ES, Zherikova KV. Crystal chemistry study of two magnesium complexes with trifluoroacetylacetone. J Struct Chem. 2018;59:131–5.CrossRefGoogle Scholar
  17. 17.
    Kubaschewski O, Evans EL. Metallurgical thermochemistry. London: Pergamon Press; 1951.Google Scholar
  18. 18.
    Volkova TV, Blokhina SV, Ryzhakov AM, Sharapova AV, Ol’khovich MV, Perlovich GL. Vapor pressure and sublimation thermodynamics of aminobenzoic acid, nicotinic acid, and related amido-derivatives. J Therm Anal Calorim. 2016;123(1):841–9.CrossRefGoogle Scholar
  19. 19.
    Vikulova ES, Cherkasov SA, Nikolaeva NS, Smolentsev AI, Sysoev SV, Morozova NB. Thermal behavior of volatile palladium(II) complexes with tetradentate Schiff bases containing propylene-diimine bridge. J Therm Anal Calorim. 2018. Scholar
  20. 20.
    Semyannikov PP, Igumenov IK, Trubin SV, Chusova TP, Semenova ZI. Thermodynamics of chromium acetylacetonate sublimation. Thermochim Acta. 2005;432:91–8.CrossRefGoogle Scholar
  21. 21.
    Morozova NB, Semyannikov PP, Trubin SV, Stabnikov PP, Bessonov AA, Zherikova KV, Igumenov IK. Vapor pressure of some volatile iridium(I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. J Therm Anal Calorim. 2009;96:261.CrossRefGoogle Scholar
  22. 22.
    Vikulova ES, Zherikova KV, Zelenina LN, Trubin SV, Sysoev SV, Semyannikov PP, Asanov IP, Morozova NB, Igumenov IK. Volatile caesium-containing compounds of Cs[Y(β-diketonato)4] type: thermal behaviour in condensed and gas phases. J Chem Therm. 2014;69:137–44.CrossRefGoogle Scholar
  23. 23.
    Semyannikov PP, Igumenov IK, Trubin SV, Asanov IP. In situ mass spectrometry during thermal CVD of the tris-acetylacetonates of 3-D transition metals. J Phys IV. 2001;11:Pr3-995–-1003.Google Scholar
  24. 24.
    Krisyuk VV, Sysoev SV, Turgambaeva AE, Nazarova AA, Koretskaya TP, Igumenov IK, Morozova NB. Thermal behavior of methoxy-substituted Pd and Cu β-diketonates and their heterobimetallic complex. J Therm Anal Calorim. 2017;130:1105–10.CrossRefGoogle Scholar
  25. 25.
    Kuznetsov FA, Titov VA, Titov AA, Chernyavskii LI. Data bank of properties of microelectronic materials. In: Proceedings of the international symposium on advanced materials, Japan, 1995; p. 24–30.Google Scholar
  26. 26.
    Morozova NB, Gelfond NV, Sysoev SV, Baklanova NI, Lyakhov NZ. Deposition of refractory coatings on carbon fibers from volatile Hf-containing precursors. J Struct Chem. 2011;52:766–70.CrossRefGoogle Scholar
  27. 27.
    Ermakova EN, Sysoev SV, Nikulina LD, Tsyrendorzhieva IP, Rakhlin VI, Kosinova ML. Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes. Thermochim Acta. 2015;622:2–8.CrossRefGoogle Scholar
  28. 28.
    Rakhlin VI, Tsyrendorzhieva IP, Sysoev SV, Rumyantsev YM, Maslova OV, Kosinova ML. 4-(Trimethylsilyl)morpholine: synthesis, characterization, and prospects of use in film deposition processes. Russ Chem Bull. 2017;66:2283–9.CrossRefGoogle Scholar
  29. 29.
    Merenkov IS, Gostevskii BA, Krasnov PO, Basova TV, Zhukov YM, Kasatkin IA, Sysoev SV, Kosyakov VI, Khomyakov MN, Kosinova ML. Novel single-source precursors for SiBxCyNz film deposition. New J Chem. 2017;41:11926–33.CrossRefGoogle Scholar
  30. 30.
    Titov VA, Kokovin GA. In: Kokovin GA, editor. Mathematics in general thermodynamics. Novosibirsk: Nauka; 1980. p. 98–105 (in Russian).Google Scholar
  31. 31.
    Zherikova KV, Zelenina LN, Pishchur DP, Emel’yanenko VN, Shoifet E, Schick C, Verevkin SP, Gelfond NV, Morozova NB. Thermochemical study of rhodium(III) acetylacetonate. J Chem Therm. 2016;102:442–50.CrossRefGoogle Scholar
  32. 32.
    Sartori A, El Habra N, Bolzan M, Rossetto G, Sitran S, Barreca D, Gasparotto A, Casarin M. Stability study of a magnesium β-diketonate as precursor for chemical vapor deposition of MgO. Chem Mater. 2011;23(5):1113–9.CrossRefGoogle Scholar
  33. 33.
    Ryazanov M, Korsakov I, Kuzmina N. MOCVD of ferroelectric BaMgF4 thin films. J Phys IV. 1999;9:Pr8-471–8.Google Scholar
  34. 34.
    Fragala ME, Toro RG, Rossi P, Dapporto P, Malandrino G. Synthesis, characterization, and mass transport properties of a self-generating single-source magnesium precursor for MOCVD of MgF2 films. Chem Mater. 2009;21:2062–9.CrossRefGoogle Scholar
  35. 35.
    Fragala ME, Toro RG, Privitera S, Malandrino G. MOCVD fabrication of magnesium fluoride films: effects of deposition parameters on structure and morphology. Chem Vap Depos. 2011;17:80–7.CrossRefGoogle Scholar
  36. 36.
    Battiato S, Deschanvres JL, Roussel H, Rapenne L, Doisneau B, Condorelli GG, Muñoz-Rojas D, Jiménez C, Malandrino G. The quest towards epitaxial BaMgF4 thin films: exploring MOCVD as a chemical scalable approach for the deposition of complex metal fluoride films. Dalton Trans. 2016;45:17833–42.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations