Advertisement

Influence of metal (M = Cd, In, and Sn) dopants on the properties of spin-coated WO3 thin films and fabrication of temperature-dependent heterojunction diodes

  • 14 Accesses

Abstract

Metal-doped tungsten trioxide (M = Cd, In, and Sn:WO3) thin films were prepared using sol–gel spin-coating and their structural, optical, electrical properties were studied for the fabrication of p–n heterojunction diode. X-ray diffraction (XRD) analysis revealed that Cd, In, and Sn dopants have a strong influence on the lattice parameters and defect factor without making any changes in the structure. Scanning electron microscope (SEM) images reflect that the dopants have a strong impact on the surface morphologies of the WO3 thin film. The UV–visible analysis shows a high optical transmittance (∼82%) and variation in the bandgap was also obtained. The dc electrical conductivity (σdc) indicates that the band conduction mechanism is predominant in the pure and doped M:WO3 thin films. Current density–voltage (JV) characteristics of WO3/p-Si, Cd:WO3/p-Si, In:WO3/p-Si, and Sn:WO3/p-Si diodes were measured under dark and illumination conditions. In which, the Sn:WO3/p-Si diode exhibits better performance with good ideality factor (n = 2.6) and barrier height (ФB = 0.90) values for under illumination. Most importantly, the JVT characteristics of all the fabricated diodes were analyzed with different temperatures (303–423 K).

Highlights

  • High quality WO3 thin films were prepared by sol–gel spin coating technique.

  • Effect of metal dopants (Cd, In and Sn) on structural and optical properties of WO3 thin films were investigated.

  • Microplate-like structure was grown on glass substrates.

  • High-sensitive heterojunction diodes were fabricated.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Li N, Stubhan T, Luechinger NA, Halim SC, Matt GJ, Ameri T, Brabec CJ (2012) Org Electron 13:2479

  2. 2.

    Kadir R, Zhang W, Wang Y, Ou JZ, Wlodarski W, OMullane AP, Bryantc G, Taylor M, Kalantar-zadeh K (2015) J Mater Chem A 3:7994

  3. 3.

    Kim YH, Kwon S, Lee JH, Park SM, Lee YM, Kim JW (2011) J Phys Chem C 115:6599

  4. 4.

    Eom TS, Kim KH, Bark CW, Choi HW (2014) Mol Cryst Liq Cryst 602:81

  5. 5.

    Meng X, Quenneville F, Venne F, Di Mauro E, Isik D, Barbosa M, Drolet Y, Natile MM, Rochefort D, Soavi F, Santato C (2015) J Phys Chem C 119:21732

  6. 6.

    Avellaneda CO, Bulhoes LOS (2003) Solid State Ion 165:117

  7. 7.

    Fang G, Liu Z, Yao KL (2001) J Phys D: Appl Phys 34:2260

  8. 8.

    Wang W, Chen S, Yang PX, Duana CG, Wang LW (2013) J Mater Chem A 1:1078

  9. 9.

    Raja M, Chandrasekaran J, Balaji M (2017) Silicon 9:201

  10. 10.

    Raja M, Chandrasekaran J, Balaji M, Janarthanan B (2016) Mater Sci Semicond Process 56:145

  11. 11.

    Vuong NM, Kim D, Kim H (2015) Sci Rep 5:11040

  12. 12.

    Patil PS, Mujawar SH, Inamdar AI, Shinde PS, Deshmukh HP, Sadale SB (2005) Appl Surf Sci 252:1643

  13. 13.

    Lethy KJ, Beena D, Pillai VPM, Ganesan V (2008) J Appl Phys 104:033515

  14. 14.

    Mukherjee R, Prajapati CS, Sahay PP (2014) J Therm Spray Technol 23:1445

  15. 15.

    Balaji M, Chandrasekaran J, Raja M, Marnadu R (2019) Mater Res Express 6:106404

  16. 16.

    Jansi Rani B, Ravi G, Yuvakkumar R, Ravichandran S, Ameen F, Al Nadhary S (2018) Renew Energy https://doi.org/10.1016/j.renene.2018.10.067

  17. 17.

    Scafé E, Maletta G, Tomaciello R, Alessandrini P, Camanzi A, De Angelis L, Galluzzi F (1983) Sol Cells 10:17

  18. 18.

    Deng Y, Yang J, Yang R, Shen K, Wang D, Wang D (2016) AIP Adv 6:015203

  19. 19.

    Avellaneda CO, Bueno PR, Faria RC, Bulhoes LOS (2001) Electrochim Acta 46:1977

  20. 20.

    Tesfamichael T, Ponzoni A, Ahsan M, Faglia G (2012) Sens Actuators B 168:345

  21. 21.

    Mukherjee R, Prajapati CS, Sahay PP (2014) J Mater Eng Perform 23:3141

  22. 22.

    Park KW (2005) Electrochim Acta 50:4690

  23. 23.

    Bathe SR, Patil PS (2008) Solid State Ion 179:314

  24. 24.

    Gaury J, Kelder EM, Bychkov E, Biskos G (2013) Thin Solid Films 534:32

  25. 25.

    Mehmood F, Iqbal J, Jan T, Ahmed W, Ahmed W, Arshad A, Mansoor Q, Ilyas SZ, Ismail M, Ahmad I (2016) Ceram Int 42:14334

  26. 26.

    Kalanur SS (2019) Catalysts 9:456

  27. 27.

    Balaji M, Chandrasekaran J, Raja M, Rajesh S (2016) J Mater Sci: Mater Electron 27:11646

  28. 28.

    Shannon RD (1976) Acta Cryst A 32:751

  29. 29.

    Zhao Y, Li Yuehua, Ren X, Gao F, Zhao H (2017) Nanomaterials 7:410

  30. 30.

    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. 3rd edn. Prentice-Hall Inc., p 167, https://www.scholars.northwestern.edu/en/publications/elements-of-x-ray-diffraction-third-edition

  31. 31.

    Patel PP, Datta MK, Velikokhatnyi OI, Kuruba R, Damodaran K, Jampani P, Gattu B, Shanthi PM, Damle SS, Kumta PN, Sci Rep. https://doi.org/10.1038/srep28367

  32. 32.

    Marnadu R, Chandrasekaran J, Maruthamuthu S, Vivek P, Balasubramani V, Balraju P (2019) J Inorg Organomet Polym Mater, https://doi.org/10.1007/s10904-019-01285-y

  33. 33.

    Marnadu R, Chandrasekaran J, Raja M, Balaji M, Maruthamuthu S, Balraju P (2018) Superlattices Microstruct 119:134

  34. 34.

    Regragui M, Jousseaume V, Addou M, Outzourhit A, Bernede JC, El Idrissi B (2001) Thin Solid Films 397:238

  35. 35.

    Sze M, Ng Kwok K Physics of semiconductor devices. (3rd Ed., Simon, 2006). https://www.wiley.com/en-us/Physics+of+Semiconductor+Devices%2C+3rd+Edition-p-9780471143239

  36. 36.

    Gayen RN, Paul R (2016) Thin Solid Films 605:248

  37. 37.

    Marnadu R, Chandrasekaran J, Maruthamuthu S, Balasubramani V, Vivek P, Suresh R (2019) Appl. Surf. Sci. 480:308

  38. 38.

    Marnadu R, Chandrasekaran J, Raja M, Balaji M, Balasubramani V (2018) J Mater Sci Mater Electron 29:2618

  39. 39.

    Vivek P, Chandrasekaran J, Marnadu R, Maruthamuthu S, Balasubramani V (2019) Superlattices Microstruct. 133:106197l

  40. 40.

    Marnadu R, Chandrasekaran J, Vivek P, Balasubramani V, Maruthamuthu S (2019) Z Phys Chem, https://doi.org/10.1515/zpch-2018-1289.

  41. 41.

    Cetin H, Ayyildiz E (2007) Physica B 394:93

  42. 42.

    Dokme I (2011) Microelectron Reliab 51:360

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874).

Author information

Correspondence to J. Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raja, M., Chandrasekaran, J., Balaji, M. et al. Influence of metal (M = Cd, In, and Sn) dopants on the properties of spin-coated WO3 thin films and fabrication of temperature-dependent heterojunction diodes. J Sol-Gel Sci Technol (2020) doi:10.1007/s10971-019-05207-9

Download citation

Keywords

  • Sol–gel spin coating
  • Ideality factor
  • WO3 thin films
  • Heterojunction diodes