Advertisement

Giant dielectric permittivity of CaCu3Ti4O12 via a green solution-egg white method

  • Jakkree Boonlakhorn
  • Narong Chanlek
  • Prasit ThongbaiEmail author
Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 32 Downloads

Abstract

CaCu3Ti4O12 ceramics were prepared using a green solution-egg white method. A main phase of CaCu3Ti4O12 is observed in the obtained powder and all sintered ceramics. The microstructure of all ceramics is studied. Their grain sizes are found to be in the range of 4–7 µm. Giant dielectric properties with low dielectric loss (tanδ ∼ 0.07) and large dielectric permittivity (ε′ ∼ 7000) are achieved in the sintered CaCu3Ti4O12 ceramic. An impedance spectroscopy analysis confirms a heterogeneous microstructure in sintered CaCu3Ti4O12 ceramics, consisting of highly resistive grain boundaries and semiconducting grains. Mixed Cu3+/Cu2+/Cu+ and Ti4+/Ti3+ phases are detected using X-ray photoelectron spectroscopy, confirming the presence of semiconducting grains.

Highlights

  • CaCu3Ti4O12 was successfully prepared using a green solution-egg white method.

  • High ε′ ∼ 7000 with low tanδ ∼ 0.07 were achieved.

  • Mixed Cu3+/Cu2+/Cu+ and Ti4+/Ti3+ phases are detected using XPS technique.

Keywords

CaCu3Ti4O12 (CCTO) Green solution Impedance spectroscopy Loss tangent Giant/colossal dielectric permittivity 

Notes

Acknowledgements

This work was financially supported by the Synchrotron Light Research Institute, Khon Kaen University, and the Thailand Research Fund (TRF) [Grant No. BRG6180003] and the National Research Council of Thailand (NRCT) (Grant Number 600007). This work was partially supported by the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology and Khon Kaen University, Thailand. J.B. would like to thank the Graduate School, Khon Kaen University (Grant No. 581T211) for his Ph.D. scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Deng J, Liu L, Sun X, Liu S, Yan T, Fang L, Elouadi B (2017) Dielectric relaxation behavior and mechanism of Y2/3Cu3Ti4O12 ceramic. Mater Res Bull 88:320–329CrossRefGoogle Scholar
  2. 2.
    Peng Z, Liang P, Chen X, Yang Z, Chao X (2018) High thermal stability and excellent dielectric properties of a novel X8R-type CdCu3Ti4O12 ceramics through a sol-gel technique. Mater Res Bull 98:340–348CrossRefGoogle Scholar
  3. 3.
    Li W, Tang L, Xue F, Xin Z, Luo Z, Du G (2017) Large reduction of dielectric losses of CaCu3Ti4O12 ceramics via air quenching. Ceram Int 43:6618–6621CrossRefGoogle Scholar
  4. 4.
    Rhouma S, Saîd S, Autret C, De Almeida-Didry S, El Amrani M, Megriche A (2017) Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: enhancement of dielectric properties. J Alloys Compd 717:121–126CrossRefGoogle Scholar
  5. 5.
    Lu D-Y, Yu X-Y, Liu J-W (2017) Mixed-valent structure, dielectric properties and defect chemistry of Ca1−3x/2TbxCu3Ti4−xTbxO12 ceramics. Ceram Int 43:8664–8676CrossRefGoogle Scholar
  6. 6.
    Du G, Wei F, Li W, Chen N (2017) Co-doping effects of A-site Y3+ and B-site Al3+ on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J Eur Ceram Soc 37:4653–4659CrossRefGoogle Scholar
  7. 7.
    Senda S, Rhouma S, Torkani E, Megriche A, Autret C (2017) Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic. J Alloys Compd 698:152–158CrossRefGoogle Scholar
  8. 8.
    Hao W, Wu H, Xu P, Shi Y, Yang S, Wang M, Sun L, Cao E, Zhang Y (2017) Influence of Sb-doping on dielectric properties of NaCu3Ti3TaO12 ceramics and relevant mechanism(s). Ceram Int 43:3631–3638CrossRefGoogle Scholar
  9. 9.
    Espinoza-González R, Hevia S, Adrian Á (2018) Effects of strontium/lanthanum co-doping on the dielectric properties of CaCu3Ti4O12 prepared by reactive sintering. Ceram Int 44:15588–15595CrossRefGoogle Scholar
  10. 10.
    Xu D, Yue X, Zhang Y, Song J, Chen X, Zhong S, Ma J, Ba L, Zhang L, Du S (2019) Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J Alloys Compd 773:853–859CrossRefGoogle Scholar
  11. 11.
    Nachaithong T, Tuichai W, Kidkhunthod P, Chanlek N, Thongbai P, Maensiri S (2017) Preparation, characterization, and giant dielectric permittivity of (Y3+ and Nb5+) co–doped TiO2 ceramics. J Eur Ceram Soc 37:3521–3526CrossRefGoogle Scholar
  12. 12.
    Chao Y, Xianhua W, Jianhua H (2018) Colossal permittivity in TiO2 co‐doped by donor Nb and isovalent Zr. J Am Ceram Soc 101:307–315CrossRefGoogle Scholar
  13. 13.
    Yu Y, Li W-L, Zhao Y, Zhang T-D, Song R-X, Zhang Y-L, Wang Z-Y, Fei W-D (2018) Large-size-mismatch co-dopants for colossal permittivity rutile TiO2 ceramics with temperature stability. J Eur Ceram Soc 38:1576–1582CrossRefGoogle Scholar
  14. 14.
    Yuan L, Hu W, Fang S, Li G, Wang X, Wu X, Han W, Li L (2018) CdO-CuO-TiO2 ternary dielectric systems: Subsolidus phase diagram and the effects of Cu segregation. J Eur Ceram Soc 38:4978–4985CrossRefGoogle Scholar
  15. 15.
    Xiao M, Li L, Zhang P (2018) Non-Ohmic properties of MgTiO3 doped CaCu3Ti4O12 thin films deposited by magnetron sputtering method. J Alloys Compd 743:570–575CrossRefGoogle Scholar
  16. 16.
    Mao P, Wang J, Liu S, Zhang L, Zhao Y, He L (2019) Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J Alloys Compd 779:625–632CrossRefGoogle Scholar
  17. 17.
    Peng Z, Liang P, Xiang Y, Peng H, Chao X, Yang Z (2018) Effect of Zr doping on dielectric properties and grain boundary response of CdCu3Ti4O12 ceramics. Ceram Int 44:20311–20321CrossRefGoogle Scholar
  18. 18.
    Mao C, Xu L, Marchenkov VV, Dyachkova TV, Tyutyunnik AP, Zainulin YG, Yang C (2018) Microstructure and dielectric properties of CaCu3Ti4O12 ceramics by quenching after sintering in low vacuum and thermobaric treatment at 9 GPa. Ceram Int 44:20069–20074CrossRefGoogle Scholar
  19. 19.
    Ribeiro WC, Joanni E, Savu R, Bueno PR (2011) Nanoscale effects and polaronic relaxation in compounds. Solid State Commun 151:173–176CrossRefGoogle Scholar
  20. 20.
    Jumpatam J, Thongbai P (2016) Enhanced dielectric and non-ohmic properties in CaCu3Ti4O12/CaTiO3 nanocomposites prepared by a chemical combustion method. J Mater Sci, Mater Electron 27:12085–12090CrossRefGoogle Scholar
  21. 21.
    Saîd S, Didry S, El Amrani M, Autret-lambert C, Megriche A (2018) Brilliant effect of Ni substitution in the appearance of high dielectric constant in CaCu2.9Ni0.1Ti3.9Ni0.1O12 ceramics. J Alloys Compd 765:927–935CrossRefGoogle Scholar
  22. 22.
    Sakthisabarimoorthi A, Martin Britto Dhas SA, Robert R, Jose M (2018) Influence of Erbium doping on the electrical behaviour of CaCu3Ti4O12 ceramics probed by impedance spectroscopy analysis. Mater Res Bull 106:81–92CrossRefGoogle Scholar
  23. 23.
    Cortés JA, Cotrim G, Orrego S, Simões AZ, Ramírez MA (2018) Dielectric and non-ohmic properties of Ca2Cu2Ti4-xSnxO12 (0.0 ≤ x ≤4.0) multiphasic ceramic composites. J Alloys Compd 735:140–149CrossRefGoogle Scholar
  24. 24.
    Tang L, Xue F, Guo P, Xin Z, Luo Z, Li W (2018) Significantly enhanced dielectric properties of Y3+ donor-doped CaCu3Ti4O12 ceramics by controlling electrical properties of grains and grain boundaries. Ceram Int 44:18535–18540CrossRefGoogle Scholar
  25. 25.
    Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW (2000) High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem 151:323–325CrossRefGoogle Scholar
  26. 26.
    Liu P, Lai Y, Zeng Y, Wu S, Huang Z, Han J (2015) Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics. J Alloys Compd 650:59–64CrossRefGoogle Scholar
  27. 27.
    Masingboon C, Maensiri S, Yamwong T, Anderson PL, Seraphin S (2008) Nanocrystalline CaCu3Ti4O12 powders prepared by egg white solution route: synthesis, characterization and its giant dielectric properties. Appl Phys A 91:87–95CrossRefGoogle Scholar
  28. 28.
    Li M, Shen Z, Nygren M, Feteira A, Sinclair DC, West AR (2009) Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J Appl Phys 106:104106CrossRefGoogle Scholar
  29. 29.
    Boonlakhorn J, Kidkhunthod P, Chanlek N, Thongbai P (2018) (Al3+, Nb5+) co–doped CaCu3Ti4O12: An extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity. J Eur Ceramic Soc 38:137–143Google Scholar
  30. 30.
    Schmidt R, Stennett MC, Hyatt NC, Pokorny J, Prado-Gonjal J, Li M, Sinclair DC (2012) Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J Eur Ceram Soc 32:3313–3323CrossRefGoogle Scholar
  31. 31.
    Boonlakhorn J, Kidkhunthod P, Putasaeng B, Thongbai P (2017) Significantly improved non-Ohmic and giant dielectric properties of CaCu3-xZnxTi4O12 ceramics by enhancing grain boundary response. Ceram Int 43:2705–2711CrossRefGoogle Scholar
  32. 32.
    Chung S-Y, Kim I-D, Kang S-JL (2004) Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat Mater 3:774–778CrossRefGoogle Scholar
  33. 33.
    Zhu Y, Wang T, Wang W, Chen S, Lichtfouse E, Cheng C, Zhao J, Li Y, Wang C (2019) CaCu3Ti4O12, an efficient catalyst for ibuprofen removal by activation of peroxymonosulfate under visible-light irradiation. Environ Chem Lett 17:481–486CrossRefGoogle Scholar
  34. 34.
    Jumpatam J, Chanlek N, Thongbai P (2019) Giant dielectric response, electrical properties and nonlinear current-voltage characteristic of Al2O3-CaCu3Ti4O12 nanocomposites. Appl Surf Sci 476:623–631CrossRefGoogle Scholar
  35. 35.
    Zhang L (2005) Electrode and grain-boundary effects on the conductivity of CaCu3Ti4O12. Appl Phys Lett 87:022907CrossRefGoogle Scholar
  36. 36.
    Li M, Sinclair DC, West AR (2011) Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale. J Appl Phys 109:084106CrossRefGoogle Scholar
  37. 37.
    Thongbai P, Yamwong T, Maensiri S, Amornkitbamrung V, Chindaprasirt P (2014) Improved dielectric and nonlinear electrical properties of fine-grained CaCu3Ti4O12 ceramics prepared by a glycine-nitrate process. J Am Ceram Soc 97:1785–1790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jakkree Boonlakhorn
    • 1
  • Narong Chanlek
    • 2
  • Prasit Thongbai
    • 1
    • 3
    Email author
  1. 1.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Synchrotron Light Research Institute (Public Organization)111 University Avenue, Muang DistrictNakhon RatchasimaThailand
  3. 3.Institute of Nanomaterials Research and Innovation for Energy (IN–RIE)NANOTEC–KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen UniversityKhon KaenThailand

Personalised recommendations