Preparation and photocatalytic properties of carbon/carbon-doped TiO2 double-layer hollow microspheres

  • Lijun JiEmail author
  • Xi Liu
  • Tong Xu
  • Mindong Gong
  • Shu Zhou
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


A carbon/carbon-doped titanium dioxide double-layer hollow microsphere (C/TiO2 microsphere) photocatalyst was prepared by hydrolysis of thermal expendable microspheres (TEMs) and a TiO2 sol–gel process. The thickness of the TiO2 and carbon layers was controlled by the concentration of sulfuric acid used for hydrolyzing the TEMs. The photocatalytic activity of the samples was studied with rhodamine B as a target degradation product. The result showed that the photocatalytic activity was affected by the thickness of the carbon and TiO2 layers significantly. The C/TiO2 microspheres obtained with 65% H2SO4 possessed the best photocatalytic activity. Compared with pure TiO2, the visible light absorption range of the C/TiO2 microspheres was expanded to 643 nm; the specific surface area was more than five times of the pure TiO2; the response intensity of photocurrent was ten times of the pure TiO2. The degradation rate of rhodamine B caused by the photocatalysis of the C/TiO2 microspheres was 96% in 140 min, and kept 83% after three times of reuse. The C/TiO2 microspheres were easy for recycling and showed great potential in wastewater treatment.


  • Polyacrylonitrile thermal expandable microsphere was used for the first time to prepare C/TiO2 double-layer hollow microspheres.

  • The thickness of the TiO2 and carbon layers was controlled by the concentration of sulfuric acid.

  • The C/TiO2 microspheres showed excellent photocatalytic activity affected by the thickness of the carbon and TiO2 layers significantly.

  • The C/TiO2 microspheres were easy for recycling and showed great potential in wastewater treatment.


Carbon Titanium dioxide Thermal expendable microspheres Sol–gel process Photocatalytic degradation Wastewater treatment 



This work is supported by the Natural Science Foundation of Jiangsu Province (No. BK20131226), the National Natural Science Foundation of China (No. 51273171), and a project is funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar
  2. 2.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B- Environ 125:331–349CrossRefGoogle Scholar
  3. 3.
    Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278CrossRefGoogle Scholar
  4. 4.
    Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971CrossRefGoogle Scholar
  5. 5.
    Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532CrossRefGoogle Scholar
  6. 6.
    Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T, Acherar S (2018) Dye-sensitized nanoparticles for heterogeneous photocatalysis: cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigments 159:49–71CrossRefGoogle Scholar
  7. 7.
    Li L, Huang X, Zhang J, Zhang W, Ma F, Xiao Z, Gai S, Wang D, Li N (2015) Multi-layer three-dimensionally ordered bismuth trioxide/titanium dioxide nanocomposite: synthesis and enhanced photocatalytic activity. J Colloid Interface Sci 443:13–22CrossRefGoogle Scholar
  8. 8.
    Li Y, Wang P, Huang C, Yao W, Wu Q, Xu Q (2017) Synthesis and photocatalytic activity of ultrafine Ag3 PO4 nanoparticles on oxygen vacated TiO2. Appl Catal B-Environ 205:489–497CrossRefGoogle Scholar
  9. 9.
    Chen X, Zhang J, Jiang X, Wang H, Kong Z, Xi J, Ji Z (2018) Curved surface TiO2 nanodrums coupled with MoS2 as heterojunction photocatalysts with enhancing photocatalytic activity. Mater Lett 229:277–280CrossRefGoogle Scholar
  10. 10.
    Wang W, Liu X, Fang J, Lu C (2019) TiO2@g-C3N4 heterojunction with directional charge migration behavior for photodegradation of tetracycline antibiotics. Mater Lett 236:622–624CrossRefGoogle Scholar
  11. 11.
    Zhang J, Chen X, Yu W, Zeng J, Shi Y, Lin S, Huang G, Zhang L, Wang H, Kong Z, Xi J, Ji Z (2019) Photocatalytic study of a novel crystal facets sensitive heterojunction between Sb8O11Cl2 and anatase TiO2 with different exposed facets. Dyes Pigments 160:530–539CrossRefGoogle Scholar
  12. 12.
    Chen MJ, Lo SL, Lee YC, Huang CC (2015) Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J Hazard Mater 288:168–175CrossRefGoogle Scholar
  13. 13.
    Hunge YM (2017) Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin films. Ceram Int 43:10089–10096CrossRefGoogle Scholar
  14. 14.
    Phatyenchuen S, Pongthawornsakun B, Panpranot J, Praserthdam P (2018) Effect of transition metal dopants (M=Nb, La, Zr, and Y) on the M-TiO2 supported V2O5 catalysts in the selective oxidation of H2S to elemental sulfur. J Environ Chem Eng 6:5655–5661CrossRefGoogle Scholar
  15. 15.
    Boningari T, Inturi SNR, Suidan M, Smirniotis PG (2018) Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chem Eng J 339:249–258CrossRefGoogle Scholar
  16. 16.
    Castellanos-Leal EL, Acevedo-Peña P, Güiza-Argüello VR, Córdoba-Tuta EM (2017) N and F Codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions. Mater Res 20:487–495CrossRefGoogle Scholar
  17. 17.
    Duan Y, Chen X, Zhang X, Xiang W, Wu C (2018) Influence of carbon source on the anatase and brookite mixed phase of the C-doped TiO2 nanoparticles and their photocatalytic activity. Solid State Sci 86:12–18CrossRefGoogle Scholar
  18. 18.
    Colomer MT, del Campo A (2019) Preparation of nanostructured TiO2 films with high catalytic activity and their 3D spatial distribution of anatase and rutile phases. J Mater Sci 54:9414–9425CrossRefGoogle Scholar
  19. 19.
    Yao Y, Yuan J, Chen X, Tan L, Gu Q, Zhao W, Chen J (2019) In situ construction and sensing mechanism of TiO2–WO3 composite coatings based on the semiconductor heterojunctions. J Mater Res Technol 8:3580–3588CrossRefGoogle Scholar
  20. 20.
    Mittal A, Mari B, Sharma S, Kumari V, Maken S, Kumari K, Kumar N (2019) Non-metal modified TiO2: a step towards visible light photocatalysis. J Mater Sci 30:3186–3207Google Scholar
  21. 21.
    Di C, Valentin, Pacchioni G, Selloni A (2005) Theory of carbon doping of titanium dioxide. Chem Mater 17:6656–6665CrossRefGoogle Scholar
  22. 22.
    Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed Engl 42:4908–4911CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhao Z, Chen J, Cheng L, Chang J, Sheng W, Hu C, Cao S (2015) C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B-Environ 165:715–722CrossRefGoogle Scholar
  24. 24.
    Wang H, Wu Z, Yue L (2009) A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. J Phys Chem C 113:13317–13324CrossRefGoogle Scholar
  25. 25.
    Yang Z, Niu Z, Lu Y, Hu Z, Han CC (2003) Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Ed Engl 42:1943–1945CrossRefGoogle Scholar
  26. 26.
    Liu J, Zhu W, Yu S, Yan X (2014) Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity. Carbon 79:369–379CrossRefGoogle Scholar
  27. 27.
    Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43:6920–6937CrossRefGoogle Scholar
  28. 28.
    Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017) Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl Catal B-Environ 212:1–6CrossRefGoogle Scholar
  29. 29.
    Ji L, Wang W, Stevens MM, Zhou S, Zhu A, Liang J (2015) A general strategy for the preparation of aligned multiwalled carbon nanotube/inorganic nanocomposites and aligned nanostructures. Mater Res Bull 61:453–458CrossRefGoogle Scholar
  30. 30.
    Wu X, Yin S, Dong Q, Guo C, Li H, Kimura T, Sato T (2013) Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B-Environ 142:450–457CrossRefGoogle Scholar
  31. 31.
    Ji L, Zhang Y, Miao S, Gong M, Liu X (2017) In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon 125:544–550CrossRefGoogle Scholar
  32. 32.
    Yu X, Liu J, Yu Y, Zuo S, Li B (2014) Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 68:718–724CrossRefGoogle Scholar
  33. 33.
    Mohamed MA, Wan Salleh WN, Jaafar J, Rosmi MS, Mohd. Hir ZA, Abd Mutalib M, Ismail AF, Tanemura M (2017) Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity. Appl Surf Sci 393:46–59CrossRefGoogle Scholar
  34. 34.
    Li M, Lu B, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J Hazard Mater 333:88–98CrossRefGoogle Scholar
  35. 35.
    Sampaio MJ, Bacsa RR, Benyounes A, Axet R, Serp P, Silva CG, Silva AMT, Faria JL (2015) Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. J Catal 331:172–180CrossRefGoogle Scholar
  36. 36.
    Zhang J, Vasei M, Sang Y, Liu H, Claverie JP (2016) TiO2@carbon photocatalysts: the effect of carbon thickness on catalysis. ACS Appl Mater Interfaces 8:1903–1912CrossRefGoogle Scholar
  37. 37.
    Jiang Z, Wei W, Mao D, Chen C, Shi Y, Lv X, Xie J (2015) Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7:784–797CrossRefGoogle Scholar
  38. 38.
    Shao J, Sheng W, Wang M, Li S, Chen J, Zhang Y, Cao S (2017) In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl Catal B-Environ 209:311–319CrossRefGoogle Scholar
  39. 39.
    Xiong Z, Zhao XS (2012) Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J Am Chem Soc 134:5754–5757CrossRefGoogle Scholar
  40. 40.
    Wang DH, Jia L, Wu XL, Lu LQ, Xu AW (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4:576–584CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lijun Ji
    • 1
    Email author
  • Xi Liu
    • 1
  • Tong Xu
    • 1
  • Mindong Gong
    • 1
  • Shu Zhou
    • 1
  1. 1.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPR China

Personalised recommendations