Synthesis and optical properties of efficient orange emitting GdB5O9:Sm3+ phosphors

  • Julija Grigorjevaite
  • Matas Janulevicius
  • Aiste Kruopyte
  • Egle Ezerskyte
  • Rokas Vargalis
  • Simas Sakirzanovas
  • Arturas KatelnikovasEmail author
Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications


In the present study the single phase polycrystalline GdB5O9:Sm3+ target materials were prepared by aqueous sol–gel method. The powder X-ray diffraction was used to monitor the crystal phase formation. Samples doped with 1 and 2.5% Sm3+ showed bright orange–red emission upon excitation with near-UV radiation. The emission possessed excellent colour saturation and good colour coordinate stability. Emission spectra recorded at different temperatures showed that the thermal quenching activation energy is around 35 meV. Moreover, the temperature dependent photoluminescence (PL) decay measurements revealed that PL lifetime values barely change in the temperature range of 77–500 K showing that the external quantum yield decreases much faster than the internal one. The highest quantum yield of ca. 60% was obtained for the sample doped with 1% Sm3+ ions. Further increase of Sm3+ content resulted in concentration quenching as a consequence of increased probability of cross-relaxation. Rather high quantum yield and well resolved sharp emission lines makes these phosphors suitable for application as an orange–red component in near-UV LEDs, on the one hand, and the luminescent security pigments, on the other hand.


  • GdB5O9:1% Sm3+ possesses 60% quantum yield.

  • GdB5O9:1% Sm3+ at 500 K loses only 40% of efficiency.

  • GdB5O9:Sm3+ phosphors possess high colour saturation.


Gadolinium, pentaborates Thermal quenching Colour coordinates Quantum efficiency Sm3+ 



This research was funded by a grant (No. S-MIP-17-48) from the Research Council of Lithuania.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5174_MOESM1_ESM.docx (164 kb)
Supplementary Information


  1. 1.
    Wells AF (1984) Structural inorganic chemistry. 5th edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Leonyuk NI (1997) Structural aspects in crystal growth of anhydrous borates. J Cryst Growth 174(1–4):301–307. CrossRefGoogle Scholar
  3. 3.
    Lin JH, Su MZ, Wurst K, Schweda E (1996) The structure of La26(BO3)8O27: a structure with a distorted fluorite type arrangement of atoms. J Solid State Chem 126(2):287–291. CrossRefGoogle Scholar
  4. 4.
    Lin JH, Zhou S, Yang LQ, Yao GQ, Su MZ, You LP (1997) Structure and luminescent properties of Y17.33(BO3)4(B2O5)2O16. J Solid State Chem 134(1):158–163. CrossRefGoogle Scholar
  5. 5.
    Ren M, Lin JH, Dong Y, Yang LQ, Su MZ, You LP (1999) Structure and phase transition of GdBO3. Chem Mater 11(6):1576–1580. CrossRefGoogle Scholar
  6. 6.
    Antic-Fidancev E, Zhang W, Krupa JC (2004) Optical study and crystal field analysis of praseodymium doped lanthanum metaborate. Mol Phys 102(11–12):1171–1176. CrossRefGoogle Scholar
  7. 7.
    Lu P, Wang Y, Lin J, You L (2001) A novel synthesis route to rare earth polyborates. Chem Commun (13):1178–1179.
  8. 8.
    Li L, Jin X, Li G, Wang Y, Liao F, Yao G, Lin J (2003) Novel rare earth polyborates. 2. Syntheses and structures. Chem Mater 15(11):2253–2260. CrossRefGoogle Scholar
  9. 9.
    Li L, Lu P, Wang Y, Jin X, Li G, Wang Y, You L, Lin J (2002) Synthesis of rare earth polyborates using molten boric acid as a flux. Chem Mater 14(12):4963–4968. CrossRefGoogle Scholar
  10. 10.
    Yi X, Cong R, Yue M, Chai Y, Jiang P, Gao W, Yang T (2013) Coordination environment evolution of Eu3+ during the dehydration and re-crystallization processes of Sm1−xEux[B9O13(OH)4]*H2O by photoluminescent characteristics. Dalton Trans 42(46):16318–16327. CrossRefGoogle Scholar
  11. 11.
    Sun X, Gao W, Yang T, Cong R (2015) Sol-gel syntheses, luminescence, and energy transfer properties of αGdB5O9:Ce3+/Tb3+ phosphors. Dalton Trans 44(5):2276–2284. CrossRefGoogle Scholar
  12. 12.
    Kruopyte A, Giraitis R, Juskenas R, Enseling D, Jüstel T, Katelnikovas A (2017) Luminescence and luminescence quenching of efficient GdB5O9:Eu3+ red phosphors. J Lumin 192:520–526. CrossRefGoogle Scholar
  13. 13.
    Grigorjevaite J, Katelnikovas A (2016) Luminescence and luminescence quenching of K2Bi(PO4)(MoO4):Eu3+ phosphors with efficiencies close to unity. ACS Appl Mater Interfaces 8(46):31772–31782. CrossRefGoogle Scholar
  14. 14.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32(5):751–767. CrossRefGoogle Scholar
  15. 15.
    Weir CE, Schroeder RA (1964) Infrared spectra of the crystalline inorganic borates. J Res Natl Stand Sec A 68(5):465–487CrossRefGoogle Scholar
  16. 16.
    Peak D, Luther GW, Sparks DL (2003) ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta 67(14):2551–2560. CrossRefGoogle Scholar
  17. 17.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21(5):836–850. CrossRefGoogle Scholar
  18. 18.
    Blasse G (1969) Energy transfer in oxidic phosphors. Philips Res Rep 24:131–144Google Scholar
  19. 19.
    Luxbacher T, Fritzer HP, Flint CD (1995) Cross relaxation from the 4G5/2 state of Sm3+ in Cs2NaSmxY1-xCl6 and Cs2NaSmxGd1-xCl6: a comparison of multipole-multipole and anisotropic dielectric shell models. J Phys: Condens Matter 7(49):9683. CrossRefGoogle Scholar
  20. 20.
    Carnall WT, Crosswhite H, Crosswhite HM (1977) Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. Argonne National Laboratory Report, Lemont, ILGoogle Scholar
  21. 21.
    Ha HM, Hoa TTQ, Vu LV, Long NN (2016) Photoluminescence and energy transfer between Sm3+ ions LaF3 nanocrystals prepared hydrothermal method Int J Mater Sci Appl 5:284–289. CrossRefGoogle Scholar
  22. 22.
    Baur F, Glocker F, Jüstel T (2015) Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J Mater Chem C 3(9):2054–2064. CrossRefGoogle Scholar
  23. 23.
    Ueda J, Dorenbos P, Bos AJJ, Meijerink A, Tanabe S (2015) Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermo luminescence excitation spectroscopy. J Phys Chem C 119(44):25003–25008. CrossRefGoogle Scholar
  24. 24.
    CRC Handbook of Chemistry and Physics. 90th edn (CD-ROM Version 2010). CRC Press/Taylor and Francis, Boca Raton, FLGoogle Scholar
  25. 25.
    Katelnikovas A, Plewa J, Sakirzanovas S, Dutczak D, Enseling D, Baur F, Winkler H, Kareiva A, Jüstel T (2012) Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs. J Mater Chem 22(41):22126–22134. CrossRefGoogle Scholar
  26. 26.
    Mackevic I, Grigorjevaite J, Janulevicius M, Linkeviciute A, Sakirzanovas S, Katelnikovas A (2019) Synthesis and optical properties of highly efficient red-emitting K2LaNb5O15:Eu3+ phosphors. Opt Mater 89:25–33. CrossRefGoogle Scholar
  27. 27.
    Yen WM, Shionoya S, Yamamoto H (2007) Fundamentals of phosphors. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Baur F, Jüstel T (2015) New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency. Aust J Chem 68(11):1727–1734. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julija Grigorjevaite
    • 1
  • Matas Janulevicius
    • 1
  • Aiste Kruopyte
    • 1
  • Egle Ezerskyte
    • 1
  • Rokas Vargalis
    • 1
  • Simas Sakirzanovas
    • 1
  • Arturas Katelnikovas
    • 1
    Email author
  1. 1.Institute of Chemistry, Vilnius UniversityVilniusLithuania

Personalised recommendations