Advertisement

Microstructural and electrical properties evaluation of lead doped tin sulfide thin films

  • S. Sebastian
  • I. Kulandaisamy
  • S. Valanarasu
  • I. S. Yahia
  • Hyun-Seok KimEmail author
  • Dhanasekaran VikramanEmail author
Original Paper: Functional coatings, thin films and membranes including deposition techniques
  • 22 Downloads

Abstract

A low cost and simple spray methodology with nebulizer was employed to fabricate lead doped tin sulfide (SnS:Pb) thin films. Different doping weight percentages (1, 3, 5, 7, and 9 wt%) were used to prepare SnS:Pb thin films on glass substrates with 350 °C substrate temperature, and we subsequently investigated Pb element influence on microstructural, electrical, and optical properties. Structural studies using X-ray diffraction confirmed orthorhombic crystal structure with (111) plane preferred orientation and atomic force micrographs identified significant variation due to the different Pb wt%. Photoluminescence showed a strong band edge emission peak at 761 nm, with optical band gaps at 1.90–1.60 eV over the Pb dopant concentrations. Hall effect showed low electrical resistivity (3.01 × 10−2 Ω cm), high carrier concentration (~1.01 × 1019 cm−3), and high Hall mobility (~20.5 cm2 V−1 s−1) for 7 wt%, which is suitable to fabricate solar cell devices. The p–n junction properties were analyzed under dark and illumination conditions by current–voltage characteristics using the FTO/n-CdS/p-SnS:Pb/Al structure.

Highlights

  • Simple spray pyrolysis technique was used to deposit Pb doped tin sulfide films.

  • Structural and topographical variations plausibly explored by XRD and AFM.

  • Low optical band gap (1.60 eV) and their near band edge PL emission were proved.

  • p–n junction (n-CdS/p-SnS:Pb) properties assessed under dark and illumination.

Keywords

SnS:Pb Thin film XRD Microstructural Resistivity p–n junction 

Notes

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1A09000823). One of the authors, ISY, expresses his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.2/9/40.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG (2014) Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater 4(15):1400496.  https://doi.org/10.1002/aenm.201400496 CrossRefGoogle Scholar
  2. 2.
    Kim J, Kim J, Yoon S, Kang J-y, Jeon C-W, Jo W (2018) Single phase formation of SnS competing with SnS2 and Sn2S3 for photovoltaic applications: optoelectronic characteristics of thin-film surfaces and interfaces. J Phys Chem C 122(6):3523–3532.  https://doi.org/10.1021/acs.jpcc.8b00179 CrossRefGoogle Scholar
  3. 3.
    Loferski JJ (1956) Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys 27(7):777–784.  https://doi.org/10.1063/1.1722483 CrossRefGoogle Scholar
  4. 4.
    Niemegeers A, Burgelman M, De Vos A (1995) On the CdS/CuInSe2 conduction band discontinuity. Appl Phys Lett 67(6):843–845CrossRefGoogle Scholar
  5. 5.
    Vikraman D, Thiagarajan S, Karuppasamy K, Sanmugam A, Choi J-H, Prasanna K, Maiyalagan T, Thaiyan M, Kim H-S (2019) Shape- and size-tunable synthesis of tin sulfide thin films for energy applications by electrodeposition. Appl Surf Sci 479:167–176.  https://doi.org/10.1016/j.apsusc.2019.02.056 CrossRefGoogle Scholar
  6. 6.
    Johny J, Sepulveda-Guzman S, Krishnan B, Avellaneda DA, Aguilar Martinez JA, Anantharaman MR, Shaji S (2019) Tin sulfide: reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications. Sol Energy Mater Sol Cells 189:53–62.  https://doi.org/10.1016/j.solmat.2018.09.025 CrossRefGoogle Scholar
  7. 7.
    Klochko NP, Lukianova OV, Kopach VR, Tyukhov II, Volkova ND, Khrypunov GS, Lyubov VM, Kharchenko MM, Kirichenko MV (2016) Development of a new thin film composition for SnS solar cell. Sol Energy 134:156–164.  https://doi.org/10.1016/j.solener.2016.04.031 CrossRefGoogle Scholar
  8. 8.
    Sun L, Haight R, Sinsermsuksakul P, Kim SB, Park HH, Gordon RG (2013) Band alignment of SnS/Zn(O,S) heterojunctions in SnS thin film solar cells. Appl Phys Lett 103(18):181904.  https://doi.org/10.1063/1.4821433 CrossRefGoogle Scholar
  9. 9.
    Patel M, Ray A (2014) Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv 4(74):39343–39350.  https://doi.org/10.1039/C4RA06219A CrossRefGoogle Scholar
  10. 10.
    Dhanasekaran V, Mahalingam T, Rhee JK, Chu JP (2011) Bath temperature effects on the microstructural and morphological properties of SnS thin films. J Adv Microsc Res 6(2):126–130.  https://doi.org/10.1166/jamr.2011.1065 CrossRefGoogle Scholar
  11. 11.
    Reghima M, Akkari A, Guasch C, Turki-Kamoun N (2014) Structure, surface morphology, and optical and electronic properties of annealed SnS thin films obtained by CBD. J Electron Mater 43(9):3138–3144.  https://doi.org/10.1007/s11664-014-3269-0 CrossRefGoogle Scholar
  12. 12.
    Reghima M, Akkari A, Guasch C, Kamoun-Turki N (2012) Effect of indium doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J Renew Sustain Energy 4(1):011602.  https://doi.org/10.1063/1.3676073 CrossRefGoogle Scholar
  13. 13.
    Dussan A, Mesa F, Gordillo G (2010) Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films. J Mater Sci 45(9):2403–2407CrossRefGoogle Scholar
  14. 14.
    Zhang S, Cheng S (2011) Thermally evaporated SnS:Cu thin films for solar cells. Micro Nano Lett 6(7):559–562CrossRefGoogle Scholar
  15. 15.
    Sinsermsuksakul P, Chakraborty R, Kim SB, Heald SM, Buonassisi T, Gordon RG (2012) Antimony-doped tin(II) sulfide thin films. Chem Mater 24(23):4556–4562.  https://doi.org/10.1021/cm3024988 CrossRefGoogle Scholar
  16. 16.
    Devika M, Reddy NK, Ramesh K, Gunasekhar KR, Gopal ESR, Reddy KTR (2006) Low resistive micrometer-thick SnS: Ag films for optoelectronic applications. J Electrochem Soc 153(8):G727–G733.  https://doi.org/10.1149/1.2204870 CrossRefGoogle Scholar
  17. 17.
    Javed A, Qurat ul A, Bashir M (2018) Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J Alloy Compd 759:14–21.  https://doi.org/10.1016/j.jallcom.2018.05.158 CrossRefGoogle Scholar
  18. 18.
    Kafashan H, Ebrahimi-Kahrizsangi R, Jamali-Sheini F, Yousefi R (2016) Effect of Al doping on the structural and optical properties of electrodeposited SnS thin films. Phys status solidi (a) 213(5):1302–1308.  https://doi.org/10.1002/pssa.201532920 CrossRefGoogle Scholar
  19. 19.
    Gremenok VF, Rud’ VY, Rud’ YV, Bashkirov SA, Ivanov VA (2011) Photosensitive thin-film In/p-PbxSn1−xS Schottky barriers: fabrication and properties. Semiconductors 45(8):1053.  https://doi.org/10.1134/S1063782611080094 CrossRefGoogle Scholar
  20. 20.
    Reddy NK, Reddy KTR (2005) SnS films for photovoltaic applications: physical investigations on sprayed SnxSy films. Phys B Condens Matter 368(1):25–31.  https://doi.org/10.1016/j.physb.2005.06.032 CrossRefGoogle Scholar
  21. 21.
    Koteeswara Reddy N, Devika M, Gopal ESR (2015) Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 40(6):359–398.  https://doi.org/10.1080/10408436.2015.1053601 CrossRefGoogle Scholar
  22. 22.
    Baby BH, Bharathi Mohan D (2018) Phase optimization study of orthorhombic structured SnS nanorods from CTAB assisted polyol synthesis for higher efficiency thin film solar cells. Sol Energy 174:373–385.  https://doi.org/10.1016/j.solener.2018.09.019 CrossRefGoogle Scholar
  23. 23.
    Sebastian S, Kulandaisamy I, Valanarasu S, Soundaram N, Paulraj K, Vikraman D, Kim H-S (2019) Investigations on Fe doped SnS thin films by nebulizer spray pyrolysis technique for solar cell applications. J Mater Sci Mater Electron 30(8):8024–8034.  https://doi.org/10.1007/s10854-019-01124-3 CrossRefGoogle Scholar
  24. 24.
    Sebastian S, Kulandaisamy I, Arulanantham AMS, Valanarasu S, Kathalingam A, Jesu Jebathew A, Shkir M, Karunakaran M (2019) Influence of Al doping concentration on the opto-electronic chattels of SnS thin films readied by NSP. Opt Quantum Electron 51(4):100.  https://doi.org/10.1007/s11082-019-1812-1 CrossRefGoogle Scholar
  25. 25.
    Arun Kumar KD, Valanarasu S, Kathalingam A, Jeyadheepan K (2018) Nd3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater Res Bull 101:264–271.  https://doi.org/10.1016/j.materresbull.2018.01.050 CrossRefGoogle Scholar
  26. 26.
    Arulanantham AMS, Valanarasu S, Kathalingam A, Jeyadheepan K (2018) Influence of carrier gas pressure on nebulizer spray deposited tin disulfide thin films. J Mater Sci Mater Electron 29(13):11358–11366.  https://doi.org/10.1007/s10854-018-9223-9 CrossRefGoogle Scholar
  27. 27.
    Arulanantham AMS, Valanarasu S, Kathalingam A, Shkir M, Kim H-S (2018) An investigation on SnS layers for solar cells fabrication with CdS, SnS2 and ZnO window layers prepared by nebulizer spray method. Appl Phys A 124(11):776.  https://doi.org/10.1007/s00339-018-2164-6 CrossRefGoogle Scholar
  28. 28.
    Dhanasekaran V, Mahalingam T, Chandramohan R, Rhee J-K, Chu JP (2012) Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films 520(21):6608–6613.  https://doi.org/10.1016/j.tsf.2012.07.021 CrossRefGoogle Scholar
  29. 29.
    Mahalingam T, Dhanasekaran V, Ravi G, Lee S, Chu J, Lim H-J (2010) Effect of deposition potential on the physical properties of electrodeposited CuO thin films. J Optoelectron Adv Mater 12(6):1327–1332Google Scholar
  30. 30.
    Anitha N, Anitha M, Saravanakumar K, Valanarasu S, Amalraj L (2018) Fabrication of antimony doped tin disulfide thin films by an inexpensive, modified spray pyrolysis technique using nebulizer. J Phys Chem Solids 119:9–18.  https://doi.org/10.1016/j.jpcs.2018.03.028 CrossRefGoogle Scholar
  31. 31.
    Niknia F, Jamali-Sheini F, Yousefi R (2015) Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method. J Electron Mater 44(12):4734–4739.  https://doi.org/10.1007/s11664-015-4079-8 CrossRefGoogle Scholar
  32. 32.
    Liu X, Yang Z, Chueh C-C, Rajagopal A, Williams ST, Sun Y, Jen AKY (2016) Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J Mater Chem A 4(46):17939–17945.  https://doi.org/10.1039/C6TA07712A CrossRefGoogle Scholar
  33. 33.
    Vikraman D, Park HJ, Kim S-I, Thaiyan M (2016) Magnetic, structural and optical behavior of cupric oxide layers for solar cells. J Alloy Compd 686:616–627CrossRefGoogle Scholar
  34. 34.
    Deepa KG, Vijayakumar KP, Sudhakartha C (2012) Lattice vibrations of sequentially evaporated CuInSe2 by Raman microspectrometry. Mater Sci Semicond Process 15(2):120–124.  https://doi.org/10.1016/j.mssp.2011.07.005 CrossRefGoogle Scholar
  35. 35.
    Nikolic PM, Mihajlovic P, Lavrencic B (1977) Splitting and coupling of lattice modes in the layer compound SnS. J Phys C Solid State Phys 10(11):L289–L292.  https://doi.org/10.1088/0022-3719/10/11/003 CrossRefGoogle Scholar
  36. 36.
    Li M, Wu Y, Li T, Chen Y, Ding H, Lin Y, Pan N, Wang X (2017) Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes. RSC Adv 7(77):48759–48765.  https://doi.org/10.1039/C7RA09430B CrossRefGoogle Scholar
  37. 37.
    Wu C, Shen L, Yu H, Huang Q, Zhang YC (2011) Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties. Mater Res Bull 46(7):1107–1112.  https://doi.org/10.1016/j.materresbull.2011.02.043 CrossRefGoogle Scholar
  38. 38.
    Kumar KDA, Valanarasu S, Jeyadheepan K, Kim H-S, Vikraman D (2018) Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics. J Mater Sci Mater Electron 29(5):3648–3656.  https://doi.org/10.1007/s10854-017-8295-2 CrossRefGoogle Scholar
  39. 39.
    Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of sol–gel synthesis for metal oxide nanostructures. In: Chandra U (ed) Recent applications in sol–gel synthesis. Rijeka, InTech, pp 1–16.  https://doi.org/10.5772/intechopen.68708
  40. 40.
    Vikraman D, Hussain S, Akbar K, Karuppasamy K, Chun S-H, Jung J, Kim H-S (2019) Design of basal plane edges in metal-doped nanostripes-structured MoSe2 atomic layers to enhance hydrogen evolution reaction activity. ACS Sustain Chem Eng 7(1):458–469.  https://doi.org/10.1021/acssuschemeng.8b03921 CrossRefGoogle Scholar
  41. 41.
    Kafashan H (2019) Optoelectronic properties of In-doped SnS thin films. Ceram Int 45(1):334–345.  https://doi.org/10.1016/j.ceramint.2018.09.172 CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Zhang Z, Dang H, Liu W (2004) Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater Sci Eng B 113(2):175–178.  https://doi.org/10.1016/j.mseb.2004.08.003 CrossRefGoogle Scholar
  43. 43.
    Arulanantham AMS, Valanarasu S, Jeyadheepan K, Ganesh V, Shkir M (2018) Development of SnS (FTO/CdS/SnS) thin films by nebulizer spray pyrolysis (NSP) for solar cell applications. J Mol Struct 1152:137–144.  https://doi.org/10.1016/j.molstruc.2017.09.077 CrossRefGoogle Scholar
  44. 44.
    Huang Z, Zou X, Zhou H (2013) A strategy to achieve superior photocurrent by Cu-doped quantum dot sensitized solar cells. Mater Lett 95:139–141.  https://doi.org/10.1016/j.matlet.2012.12.095 CrossRefGoogle Scholar
  45. 45.
    Li C, Wang J, Su W, Chen H, Zhong W, Zhang P (2001) Effect of Mn2+ on the electrical nonlinearity of (Ni, Nb)-doped SnO2 varistors. Ceram Int 27(6):655–659.  https://doi.org/10.1016/S0272-8842(01)00014-1 CrossRefGoogle Scholar
  46. 46.
    Kumar KS, Manohari AG, Dhanapandian S, Mahalingam T (2014) Physical properties of spray pyrolyzed Ag-doped SnS thin films for opto-electronic applications. Mater Lett 131:167–170.  https://doi.org/10.1016/j.matlet.2014.05.186 CrossRefGoogle Scholar
  47. 47.
    Dhanasekaran V, Mahalingam T (2013) Surface modifications and optical variations of (−111) lattice oriented CuO nanofilms for solar energy applications. Mater Res Bull 48(9):3585–3593.  https://doi.org/10.1016/j.materresbull.2013.05.072 CrossRefGoogle Scholar
  48. 48.
    Mathews NR (2012) Electrodeposited tin selenide thin films for photovoltaic applications. Sol Energy 86(4):1010–1016.  https://doi.org/10.1016/j.solener.2011.06.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsArul Anandar College, KarumathurMaduraiIndia
  2. 2.Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Physics Department, Faculty of EducationAin Shams University, RoxyCairoEgypt
  4. 4.Division of Electronics and Electrical EngineeringDongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations