Advertisement

Synergistic effect of control parameters and morphology on synthesis and performance of the Al2O3/MWCNT composite as a promising capacitor material

  • G. B. KundeEmail author
  • B. Sehgal
  • A. K. GanguliEmail author
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • 44 Downloads

Abstract

The functional ceramic/CNT composites were investigated using the alumina (Al2O3)/multiwall carbon nanotube (MWCNT) composite as a promising capacitor material based on its electrochemical properties, mesoporous morphology, and aligned MWCNT network. The aligned morphology of the carbon nanotubes in alumina matrix annealed at 900 °C resulted in increased surface area (609.55 m2 g−1), hardness (11 GPa), and Young’s modulus (85.88 GPa). The electrochemical properties of the Al2O3/MWCNT composite were investigated by galvanostatic charge–discharge, cyclic voltammetry, and electrochemical impedance spectroscopy measurements. The MWCNT/Al2O3 composite displays appreciable specific capacitance (183.33 F g−1), energy density (9.16 Wh kg−1), and power density (2.99 kW kg−1) with the addition of 5 wt.% MWCNT. The cycling characteristics of the electrode material show excellent stability up to 1000 charge/discharge cycles with MWCNTs playing the role of the current collector while mesoporous alumina adds to the capacitive performance of the electrode. The alignment of MWCNTs within the alumina matrix changed into accountable for the electrochemical properties of the composite. The results obtained and the ceramic film fabrication technique used in this work provide unflinching confidence that this composite material will be utilized for the fabrication of cost-effective devices for energy storage applications.

Highlights

  • The exohedral functionalized structure of the MWCNT in the alumina matrix achieved without aggregation.

  • Sol–gel technique retained the intrinsic properties of CNTs and provided mechanical strength to the composite film.

  • MWCNT acts as conducting filler in alumina matrix and is studied as electrochemical promising capacitor material.

  • Appreciable value of specific capacitance, energy density, and power density obtained with an addition of merely 5 wt.% MWCNT.

Keywords

Multiwalled carbon nanotubes Alumina Sol–gel method Capacitor 

Notes

Acknowledgements

The authors GBK and BS are thankful to the University Grants Commission, New Delhi, India, for financial assistance. Authors are grateful to facilities provided by NRF and CRF, IIT Delhi, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5158_MOESM1_ESM.pdf (701 kb)
Supplementary information

References

  1. 1.
    Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys.  https://doi.org/10.1103/RevModPhys.45.574 CrossRefGoogle Scholar
  2. 2.
    Zallen R (2008) The physics of amorphous solids. John Wiley & SonsGoogle Scholar
  3. 3.
    Hu Y, Shenderova OA, Hu Z, et al. (2006) Carbon nanostructures for advanced composites. Reports Prog Phys.  https://doi.org/10.1088/0034-4885/69/6/R05 CrossRefGoogle Scholar
  4. 4.
    Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett.  https://doi.org/10.1021/nl800967n CrossRefGoogle Scholar
  5. 5.
    Vilatela JJ, Eder D (2012) Nanocarbon composites and hybrids in sustainability: a review. ChemSusChem. 5(3):456–478CrossRefGoogle Scholar
  6. 6.
    Peigney A, Flahaut E, Laurent C, et al. (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett.  https://doi.org/10.1016/S0009-2614(01)01441-5 CrossRefGoogle Scholar
  7. 7.
    Harris PJF (2004) Carbon nanotube composites. Int Mater Rev.  https://doi.org/10.1179/095066004225010505 CrossRefGoogle Scholar
  8. 8.
    Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater.  https://doi.org/10.1002/adma.200802270 CrossRefGoogle Scholar
  9. 9.
    Flahaut E, Peigney A, Laurent C, et al. (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater.  https://doi.org/10.1016/S1359-6454(00)00147-6 CrossRefGoogle Scholar
  10. 10.
    Siegel RW, Chang SK, Ash BJ, et al. (2001) Mechanical behavior of polymer and ceramic matrix nanocomposites. Scr Mater.  https://doi.org/10.1016/S1359-6462(01)00892-2 CrossRefGoogle Scholar
  11. 11.
    Li HJ, Lu WG, Li JJ, et al. (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.95.086601
  12. 12.
    Ando Y, Zhao X, Shimoyama H, et al. (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater.  https://doi.org/10.1016/S1463-0176(99)00012-5 CrossRefGoogle Scholar
  13. 13.
    Zhan G-D, Mukherjee AK (2005) Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties. Int J Appl Ceram Technol.  https://doi.org/10.1111/j.1744-7402.2004.tb00166.x CrossRefGoogle Scholar
  14. 14.
    Cao Z, Wei B (2013) A perspective: carbon nanotube macro-films for energy storage. Energy Environ Sci. 6(11):3183–3201CrossRefGoogle Scholar
  15. 15.
    Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals (pp. 320–329)CrossRefGoogle Scholar
  16. 16.
    Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon NY.  https://doi.org/10.1016/S0008-6223(02)00045-3 CrossRefGoogle Scholar
  17. 17.
    An KH, Kim WS, Park YS, et al. (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funtional Mater. https://doi.org/10.1002/1616-3028(200110)11:53.0.CO;2-G
  18. 18.
    Niu C, Sichel EK, Hoch R, et al. (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett.  https://doi.org/10.1063/1.118568 CrossRefGoogle Scholar
  19. 19.
    Silva PR, Almeida VO, MacHado GB, et al. (2012) Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol-gel method. Langmuir.  https://doi.org/10.1021/la203056f CrossRefGoogle Scholar
  20. 20.
    Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube-Al2O3composites. J Eur Ceram Soc.  https://doi.org/10.1016/j.jeurceramsoc.2009.12.005 CrossRefGoogle Scholar
  21. 21.
    Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951.  https://doi.org/10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  22. 22.
    Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater.  https://doi.org/10.1002/adfm.200500142 CrossRefGoogle Scholar
  23. 23.
    Su L, Zhang X, Yuan C, Gao B (2008) Symmetric self-hybrid supercapacitor consisting of multiwall carbon nanotubes and Co–Al layered double hydroxides. J Electrochem Soc.  https://doi.org/10.1149/1.2806844 CrossRefGoogle Scholar
  24. 24.
    Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C.  https://doi.org/10.1021/jp069006m CrossRefGoogle Scholar
  25. 25.
    Tao Z, Geng H, Yu K, et al. (2004) Effects of high-energy ball milling on the morphology and the field emission property of multi-walled carbon nanotubes. Mater Lett.  https://doi.org/10.1016/j.matlet.2004.05.045 CrossRefGoogle Scholar
  26. 26.
    Zhang T, Kumari L, Du GH, et al. (2009) Mechanical properties of carbon nanotube-alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering. Compos Part A Appl Sci Manuf.  https://doi.org/10.1016/j.compositesa.2008.10.003 CrossRefGoogle Scholar
  27. 27.
    He CN, Tian F, Liu SJ (2009) A carbon nanotube/alumina network structure for fabricating alumina matrix composites. J Alloys Compd.  https://doi.org/10.1016/j.jallcom.2008.12.027 CrossRefGoogle Scholar
  28. 28.
    Zaman AC, Üstündaĝ CB, Çelik A, et al. (2010) Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS). J Eur Ceram Soc.  https://doi.org/10.1016/j.jeurceramsoc.2010.07.037 CrossRefGoogle Scholar
  29. 29.
    Cha SI, Kim KT, Lee KH et al. (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53:793–797.  https://doi.org/10.1016/j.scriptamat.2005.06.011 CrossRefGoogle Scholar
  30. 30.
    Kunde GB, Yadav GD (2016) Sol–gel synthesis and characterization of defect-free alumina films and its application in the preparation of supported ultrafiltration membranes. J Sol-Gel Sci Technol 77.  https://doi.org/10.1007/s10971-015-3852-8 CrossRefGoogle Scholar
  31. 31.
    Ferrari AC, Robertson J (2004) Raman spectroscopy in carbons: from nanotubes to diamond. Preface. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.Google Scholar
  32. 32.
    Zdrojek M, Gebicki W, Jastrzebski C, et al. (2004) Studies of multiwall carbon nanotubes using raman spectroscopy and atomic force microscopy. Solid State Phenom.  https://doi.org/10.4028/www.scientific.net/SSP.99-100.265 CrossRefGoogle Scholar
  33. 33.
    Tarte P (1967) Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A Mol Spectrosc. 23:2127–2143.CrossRefGoogle Scholar
  34. 34.
    Urretavizcaya G, Cavalieri AL, Porto López JM, et al. (1998) Thermal evolution of alumina prepared by the sol-gel technique. J Mater Synth Process.  https://doi.org/10.1023/A:1022674107059 CrossRefGoogle Scholar
  35. 35.
    Hou H, Xie Y, Yang Q, et al. (2005) Preparation and characterization of γ-AlOOH nanotubes and nanorods. Nanotechnology.  https://doi.org/10.1088/0957-4484/16/6/019 CrossRefGoogle Scholar
  36. 36.
    Parida KM, Pradhan AC, Das J, Sahu N (2009) Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater Chem Phys.  https://doi.org/10.1016/j.matchemphys.2008.07.076 CrossRefGoogle Scholar
  37. 37.
    Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater. 137(2):762–811.CrossRefGoogle Scholar
  38. 38.
    Sheldon BW, Curtin WA (2004) Nanoceramic composites: tough to test. Nat Mater.  https://doi.org/10.1038/nmat1174 CrossRefGoogle Scholar
  39. 39.
    Yang D, Paul B, Xu W, et al. (2010) Alumina nanofibers grafted with functional groups: a new design in efficient sorbents for removal of toxic contaminants from water. Water Res.  https://doi.org/10.1016/j.watres.2009.10.014 CrossRefGoogle Scholar
  40. 40.
    Ibrahim DM, Abu-Ayana YM (2009) Preparation of nano alumina via resin synthesis. Mater Chem Phys.  https://doi.org/10.1016/j.matchemphys.2008.07.113 CrossRefGoogle Scholar
  41. 41.
    Barzegar-Bafrooei H, Ebadzadeh T (2011) Synthesis of nanocomposite powders of γ-alumina-carbon nanotube by sol-gel method. Adv Powder Technol.  https://doi.org/10.1016/j.apt.2010.05.005 CrossRefGoogle Scholar
  42. 42.
    Kunde GB, Yadav GD (2016) Green approach in the sol-gel synthesis of defect free unsupported mesoporous alumina films. Microporous Mesoporous Mater 224:43–50.  https://doi.org/10.1016/j.micromeso.2015.10.045 CrossRefGoogle Scholar
  43. 43.
    Liu Y, Chae HG, Ho Choi Y, Kumar S (2014) Effect of carbon nanotubes on sintering behavior of alumina prepared by sol-gel method. Ceram Int.  https://doi.org/10.1016/j.ceramint.2013.11.112 CrossRefGoogle Scholar
  44. 44.
    Zhou R‐S, Snyder RL (1991) Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr Sect B.  https://doi.org/10.1107/S0108768191002719 CrossRefGoogle Scholar
  45. 45.
    Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science (80-).  https://doi.org/10.1126/science.272.5261.523 CrossRefGoogle Scholar
  46. 46.
    Kastening B, Spinzig S (1986) Electrochemical polarization of activated carbon and graphite powder suspensions. Part II. Exchange of ions between electrolyte and pores. J Electroanal Chem.  https://doi.org/10.1016/0022-0728(86)80104-8 CrossRefGoogle Scholar
  47. 47.
    Mayer ST (1993) The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc.  https://doi.org/10.1149/1.2221066 CrossRefGoogle Scholar
  48. 48.
    Tanahashi I (1990) Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. J Electrochem Soc.  https://doi.org/10.1149/1.2086158 CrossRefGoogle Scholar
  49. 49.
    Inam F, Peijs T, Reece MJ (2011) The production of advanced fine-grained alumina by carbon nanotube addition. J Eur Ceram Soc.  https://doi.org/10.1016/j.jeurceramsoc.2011.07.011 CrossRefGoogle Scholar
  50. 50.
    Kim SW, Chung WS, Sohn KS, et al. (2009) Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mater Sci Eng A.  https://doi.org/10.1016/j.msea.2009.04.035 CrossRefGoogle Scholar
  51. 51.
    Chen JH, Li WZ, Wang DZ, et al. (2002) Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon NY.  https://doi.org/10.1016/S0008-6223(01)00266-4 CrossRefGoogle Scholar
  52. 52.
    Aravinda LS, Nagaraja KK, Nagaraja HS, et al. (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta.  https://doi.org/10.1016/j.electacta.2013.02.027 CrossRefGoogle Scholar
  53. 53.
    Lin P, She Q, Hong B, et al. (2010) The nickel oxide/CNT composites with high capacitance for supercapacitor. J Electrochem Soc.  https://doi.org/10.1149/1.3425624 CrossRefGoogle Scholar
  54. 54.
    Pauporte T, Lupan O, Viana B, et al. (2014) Controlling the properties of electrodeposited ZnO nanowire arrays for light emitting diode, photodetector and gas sensor applications. Oxide-Based Mater Devices V.  https://doi.org/10.1117/12.2039839
  55. 55.
    Hassan JJ, Mahdi MA, Yusof Y, et al. (2013) Fabrication of ZnO nanorod/p-GaN high-brightness UV LED by microwave-assisted chemical bath deposition with Zn(OH)2-PVA nanocomposites as seed layer. Opt Mater (Amst).  https://doi.org/10.1016/j.optmat.2012.12.006 CrossRefGoogle Scholar
  56. 56.
    Guo J, Zhang J, Zhu M, et al. (2014) High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators, B Chem.  https://doi.org/10.1016/j.snb.2014.04.010 CrossRefGoogle Scholar
  57. 57.
    McCune M, Zhang W, Deng Y (2012) High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett.  https://doi.org/10.1021/nl301407b CrossRefGoogle Scholar
  58. 58.
    Knazdtgelit H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev.  https://doi.org/10.1080/03602457808080878 CrossRefGoogle Scholar
  59. 59.
    Ballinger TH, Yates JT (1991) IR spectroscopic detection of lewis acid sites on AI2O3 using adsorbed CO. Correlation with Al-OH Group Removal. Langmuir.  https://doi.org/10.1021/la00060a022 CrossRefGoogle Scholar
  60. 60.
    Liu X, Truitt RE (1997) DRFT-IR studies of the surface of γ-Alumina. J Am Chem Soc.  https://doi.org/10.1021/ja971214s CrossRefGoogle Scholar
  61. 61.
    Pacchioni G, Freund H (2012) Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chemical reviews. 113(6):4035–4072CrossRefGoogle Scholar
  62. 62.
    Chen PC, Shen G, Sukcharoenchoke S, Zhou C (2009) Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl Phys Lett.  https://doi.org/10.1063/1.3069277 CrossRefGoogle Scholar
  63. 63.
    Rautio AR, Pitkänen O, Järvinen T, et al. (2015) Electric double-layer capacitors based on multiwalled carbon nanotubes: can nanostructuring of the nanotubes enhance performance? J Phys Chem C.  https://doi.org/10.1021/jp512481b CrossRefGoogle Scholar
  64. 64.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C.  https://doi.org/10.1021/jp908739q CrossRefGoogle Scholar
  65. 65.
    Zhai T, Lu X, Ling Y, et al. (2014) A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13–x. Adv Mater.  https://doi.org/10.1002/adma.201402041 CrossRefGoogle Scholar
  66. 66.
    Zhao Y, Meng Y, Jiang P (2014) Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials. J Power Sources.  https://doi.org/10.1016/j.jpowsour.2014.02.086 CrossRefGoogle Scholar
  67. 67.
    Sharifi-Viand A, Mahjani MG, Jafarian M (2012) Investigation of anomalous diffusion and multifractal dimensions in polypyrrole film. J Electroanal Chem.  https://doi.org/10.1016/j.jelechem.2012.02.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology Delhi, Hauz KhasNew DelhiIndia
  2. 2.Department of Applied Chemistry, Faculty of Technology and EngineeringThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations