Advertisement

Elaboration of microporous CeO2 thin layers having nanocrystallites network controlled by Pluronic P123: Impact of key experimental parameters

  • Zijie LuEmail author
  • Diane Rébiscoul
  • Jeremy Causse
  • Xavier le Goff
  • Nicolas Mollard
  • Xavier Deschanels
Original Paper: Sol-gel, hybrids and solution chemistries
  • 17 Downloads

Abstract

Microporous ceria thin films having nanocrystallites network were synthesized by evaporation-induced self-assembly process, using P123 amphiphilic copolymer as structure-directing agent. The impact of key experimental parameters, i.e., the sol ageing, the relative humidity (RH), the thermal treatment, on the thin layer elaboration were investigated. The results show that the organization of the nanoparticles is possible for a sol ageing time lower than 16 days and that the size of the mesophase within the thin layer increases with the relative humidity fixed during the film deposition. Finally, an increase of the thermal treatment temperature from 300 to 1000 °C leads to the formation of fluorite-like dioxide material coupled with a loss of nanocrystallites organization and porosity due to the increase of the size of the crystallites. This loss of nanocrystallites organization is more drastic in the direction perpendicular to the surface and less pronounced along the surface. Thus, a compromise between the crystallization and the preservation of the porosity needs to be found.

Highlights

  • Structuration of mesoporosity is possible for a sol of cerium aged less than 16 days.

  • The size of the mesophase within the thin layer increases for a fixed value of relative humidity during film deposition.

  • Increase in thermal treatment temperature from 300 °C to 1000 °C leads to the formation of fluorite-like dioxide material with a face-centered cubic cell structure, coupled with a loss of pore periodicity and film densification.

Notes

Acknowledgements

We are grateful to Bruno Corso and Alban Jonchere for XRR/GIXRD and ATR–FTIR maintenance. We thank S. Dourdain for her help during the SEM analysis and Sino-French Institute of Nuclear Engineering and Technology of Sun Yat-sen University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5147_MOESM1_ESM.pdf (789 kb)
Appendices

References

  1. 1.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367.  https://doi.org/10.1016/s0920-5861(98)00515-x CrossRefGoogle Scholar
  2. 2.
    Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012):1797–1801.  https://doi.org/10.1126/science.1197834 CrossRefGoogle Scholar
  3. 3.
    Roggenbuck J, Schäfer H, Tsoncheva T, Minchev C, Hanss J, Tiemann M (2007) Mesoporous CeO2: synthesis by nanocasting, characterisation and catalytic properties. Microporous mesoporous Mater 101(3):335–341CrossRefGoogle Scholar
  4. 4.
    Lyons DM, Ryan KM, Morris MA (2002) Preparation of ordered mesoporous ceria with enhanced thermal stability. J Mater Chem 12(4):1207–1212CrossRefGoogle Scholar
  5. 5.
    Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G (1998) The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J Catal 178(1):299–308CrossRefGoogle Scholar
  6. 6.
    Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3(6):394–397.  https://doi.org/10.1038/nmat1129 CrossRefGoogle Scholar
  7. 7.
    Brezesinski T, Erpen C, Iimura K-i, Smarsly B (2005) Mesostructured crystalline ceria with a bimodal pore system using block copolymers and ionic liquids as rational templates. Chem Mater 17(7):1683–1690CrossRefGoogle Scholar
  8. 8.
    Hierso J, Boy P, Vallé K, Vulliet J, Blein F, Laberty-Robert C, Sanchez C (2013) Nanostructured ceria based thin films (≤1 μm) As cathode/electrolyte interfaces. J Solid State Chem 197:113–119CrossRefGoogle Scholar
  9. 9.
    Reitz C, Haetge J, Suchomski C, Brezesinski T (2013) Facile and general synthesis of thermally stable ordered mesoporous rare-earth oxide ceramic thin films with uniform mid-size to large-size pores and strong crystalline texture. Chem Mater 25(22):4633–4642CrossRefGoogle Scholar
  10. 10.
    Yu J, Jimmy CY, Ho W, Jiang Z (2002) Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J Chem 26(5):607–613CrossRefGoogle Scholar
  11. 11.
    Manzini AM, Alurralde MA, Gimenez G, Luca V (2016) The radiation response of mesoporous nanocrystalline zirconia thin films. J Nucl Mater 482:175–186.  https://doi.org/10.1016/j.jnucmat.2016.10.019 CrossRefGoogle Scholar
  12. 12.
    Zakaria MB, Suzuki N, Torad NL, Matsuura M, Maekawa K, Tanabe H, Yamauchi Y (2013) Preparation of mesoporous titania thin films with well-crystallized frameworks by using thermally stable triblock copolymers. Eur J Inorg Chem 2013(13):2330–2335CrossRefGoogle Scholar
  13. 13.
    Nolan SL, Phillips RJ, Cotts PM, Dungan SR (1997) Light scattering study on the effect of polymer composition on the structural properties of PEO–PPO–PEO micelles. J colloid interface Sci 191(2):291–302CrossRefGoogle Scholar
  14. 14.
    Azenha ME, Burrows HD, Fonseca SM, Ramos ML, Rovisco J, de Melo JS, Sobral AJ, Kogej K (2008) Luminescence from cerium (III) acetate complexes in aqueous solution: considerations on the nature of carboxylate binding to trivalent lanthanides. New J Chem 32(9):1531–1535CrossRefGoogle Scholar
  15. 15.
    Bardeau J-F, Gourbil A, Dutreilh-Colas M, Dourdain S, Mehdi A, Gibaud A (2006) X-ray reflectivity study of acid–base post-synthesis treatments of mesoporous thin films templated by P123. Thin Solid Films 495(1):191–196CrossRefGoogle Scholar
  16. 16.
    Dourdain S, Rezaire A, Mehdi A, Ocko B, Gibaud A (2005) Real time GISAXS study of micelle hydration in CTAB templated silica thin films. Phys B: Condens Matter 357(1-2):180–184CrossRefGoogle Scholar
  17. 17.
    Phonthammachai N, Rumruangwong M, Gulari E, Jamieson A, Jitkarnka S, Wongkasemjit S (2004) Synthesis and rheological properties of mesoporous nanocrystalline CeO2 via sol–gel process. Colloids Surf A: Physicochemical Eng Asp 247(1):61–68CrossRefGoogle Scholar
  18. 18.
    Darroudi M, Sabouri Z, Oskuee RK, Zak AK, Kargar H, Hamid MHNA (2013) Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram Int 39(8):9195–9199CrossRefGoogle Scholar
  19. 19.
    Rumruangwong M, Wongkasemjit S (2008) Anionic surfactant-aided preparation of high surface area and high thermal stability ceria/zirconia-mixed oxide from cerium and zirconium glycolates via sol–gel process and its reduction property. Appl Organomet Chem 22(3):167–170CrossRefGoogle Scholar
  20. 20.
    Grosso D, Babonneau F, Albouy P-A, Amenitsch H, Balkenende A, Brunet-Bruneau A, Rivory J (2002) An in situ study of mesostructured CTAB−silica film formation during dip coating using time-resolved SAXS and interferometry measurements. Chem Mater 14(2):931–939CrossRefGoogle Scholar
  21. 21.
    Grosso D, Balkenende A, Albouy P, Ayral A, Amenitsch H, Babonneau F (2001) Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization and formation mechanism. Chem Mater 13(5):1848–1856CrossRefGoogle Scholar
  22. 22.
    Grosso D, Cagnol F, Soler-Illia GdA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14(4):309–322CrossRefGoogle Scholar
  23. 23.
    Brinker CJ, Scherer GW (1990) Sol-Gel science. Academic Press, San Diego, p 2Google Scholar
  24. 24.
    Günzler H, Gremlich H-U (2002) IR spectroscopy. An introduction. John Wiley & Sons, p 182Google Scholar
  25. 25.
    Nyquist RA, Kagel RO (2012) Handbook of infrared and raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, vol 4. Academic PressGoogle Scholar
  26. 26.
    Babitha K, Sreedevi A, Priyanka K, Sabu B, Varghese T (2015) Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. Indian J Pure Appl Phys 53(9):596–603Google Scholar
  27. 27.
    Faisal M, Khan SB, Rahman MM, Jamal A, Akhtar K, Abdullah M (2011) Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor. J Mater Sci Technol 27(7):594–600CrossRefGoogle Scholar
  28. 28.
    Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409(15):2987–2992CrossRefGoogle Scholar
  29. 29.
    Ferraro JR (2012) Low-frequency vibrations of inorganic and coordination compounds. Springer Science & Business Media, p 73Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICSM, CEA, CNRS, ENSCM, University of MontpellierMarcouleFrance
  2. 2.Université Grenoble Alpes, INAC MEM, CEAGrenobleFrance

Personalised recommendations