Resistive switching characteristics of Pt/Nb:SrTiO3/LaNiO3 heterostructure

  • Jiqiang JiaEmail author
  • Jianhua Gao
  • Yang Ren
  • Gaoyang Zhao
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


Herein, Pt/Nb:SrTiO3/LaNiO3(Pt/NSTO/LNO) heterostructures are prepared by the sol–gel method, and the resistive switching (RS) characteristics of NSTO films are studied under different preparation conditions and Nb-doping content. It is shown from SEM images that the grain size of NSTO decreases with the increase of Nb-doping content. It is observed from electrical tests and analysis that the RS phenomenon of the Pt/NSTO/LNO structure can be attributed to the migration of internal oxygen vacancies, which are formed during the material preparation. J–V curves of Pt/NSTO/LNO, prepared under different heat treatment atmospheres, exhibit that pure nitrogen atmosphere results in optimal RS performance. In addition, the RS performance has shown an increasing trend with Nb content up to a threshold limit, followed by a gradual decrease. Furthermore, the RS performance of Pt/NSTO/LNO, prepared at different heat treatment temperatures, was investigated. The results demonstrate that the hysteresis window of RS for the Pt/NSTO/LNO structure first increased with increasing temperature, followed by a decrease. Moreover, the optimal RS performance is achieved at the heat treatment temperature of 700 °C.


  • All sol-gel process prepared the heteroepitaxial Nb:SrTiO3/LaNiO3 bilayer.

  • The resistive switching characteristics of the Pt/Nb:SrTiO3/LaNiO3 are studied under different preparation conditions and Nb doping content.

  • The effect mechanism of oxygen vacancies on the resistive switching characteristics of the Pt/Nb:SrTiO3/LaNiO3 is analyzed.


Sol–gel J–V curves Resistive switching 



This project is funded by China Postdoctoral Science Fundation (No. 2018M643696), Special Scientific Research Project of Shaanxi Provincial Department of Education (19JK0567), and the National Natural Science Foundation of China (No. 51672212 and 51802260).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kim S, Choi YK (2008) Resistive switching of aluminum oxide for flexible memory. Appl Phys Lett 92:223508CrossRefGoogle Scholar
  2. 2.
    Lee CB, Kang BS, Benayad A, Lee MJ, Ahn SE, Kim KH, Stefanovich G, Park Y, Yoo IK (2008) Effects of metal electrodes on the resistive memory switchingproperty of NiO thin films. Appl Phys Lett 93:042115CrossRefGoogle Scholar
  3. 3.
    Kumar D, Aluguri R, Chand U, Tseng TY (2017) Metal oxide resistive switching memory: materials, properties and switching mechanisms. Ceram Int 43:547–556CrossRefGoogle Scholar
  4. 4.
    Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36CrossRefGoogle Scholar
  5. 5.
    Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663CrossRefGoogle Scholar
  6. 6.
    Mikheev E, Hoskins BD, Strukov DB, Stemmer S (2014) Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nat Commun 5:3990CrossRefGoogle Scholar
  7. 7.
    Guo MQ, Chen YC, Lin CY, Chang YF, Fowler B, Li QQ, Lee J, Zhao YG (2017) Unidirectional threshold resistive switching in Au/NiO/Nb:SrTiO3 devices. Appl Phys Lett 11:0233504CrossRefGoogle Scholar
  8. 8.
    Wang JF, Cao D, Zhou Y, Wang XY, Jiao ZW, Gao J (2015) Series resistance effects in La0.5Ca0.5MnO3/SrTiO3:Nb (001) heterojunctions. J Phys D: Appl Phys 48:385104CrossRefGoogle Scholar
  9. 9.
    Kurij G, Solignac A, Maroutian T, Agnus G, Guerrero R, Calvet LE, Pannetier-Lecoeur M, Lecoeur P (2017) Low noise all-oxide magnetic tunnel junctions based on a La0.7Sr0.3MnO3/Nb:SrTiO3 interface. Appl Phys Lett 110:082405CrossRefGoogle Scholar
  10. 10.
    Gao CX, Lv FZ, Zhang P, Zhang C, Zhang SM, Dong CH, Gou YC, Jiang CJ, Xue DS (2015) Tri-state bipolar resistive switching behavior in a hydrothermally prepared epitaxial BiFeO3 film. J Alloy Compd 649:694–698CrossRefGoogle Scholar
  11. 11.
    Zhang MJ, Hao FX, Zhang C, Liu X, Li XG (2015) Anisotropic rectifying characteristics induced by the superconducting gap of YBa2Cu3O7–δ/Nb-doped SrTiO3 heterojunctions. Appl Phys Lett 147:183508CrossRefGoogle Scholar
  12. 12.
    Acharya SK, Nallagatla RV, Togibasa O, Lee BW, Liu C, Jung CU, Park BH, Park JY, Cho Y, Kim DW, Jo J, Kwon DH, Kim M, Hwang CS, Chae SC (2016) Epitaxial brownmillerite oxide thin films for reliable switching memory. ACS Appl Mater Inter 8:7902CrossRefGoogle Scholar
  13. 13.
    Ni MC, Guo SM, Tian HF, Zhao YG, Li JQ (2007) Resistive switching effect in SrTiO3-δ/Nb-doped SrTiO3 heterojunction. Appl Phys Lett 91:183502CrossRefGoogle Scholar
  14. 14.
    Zhang XT, Yu QX, Yao YP, Li XG (2010) Ultrafast resistive switching in SrTiO3:Nb single crystal. Appl Phys Lett 97:222117CrossRefGoogle Scholar
  15. 15.
    Janousch M, Meijer GI, Staub U, Delley B, Karg SF, Andreasson BP (2007) Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv Mater 19:2232–2235CrossRefGoogle Scholar
  16. 16.
    Park J, Kwon DH, Park H, Jung CU, Kim M (2014) Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett 105:183103CrossRefGoogle Scholar
  17. 17.
    Sun J, Jia CH, Li GQ, Zhang WF (2012) Control of normal and abnormal bipolar resistive switching by interface junction on In/Nb:SrTiO3 interface. Appl Phys Lett 101:133506CrossRefGoogle Scholar
  18. 18.
    Hirose S, Nishimura H, Niimi H (2009) Resistance switching effect in Nb-doped SrTiO3 (100) bicrystal with (100) ∼45°twist boundary. J Appl Phys 106:043714CrossRefGoogle Scholar
  19. 19.
    Bersuker G, Gilmer DC, Veksler D, Kirsch P, Vandelli L, Padovani A, Larcher L, McKenna K, Shluger A, Iglesias V, Porti M, Nafría M (2011) Metal oxide resistive memory switching mechanism based on conductive filament properties. J Appl Phys 110:124518CrossRefGoogle Scholar
  20. 20.
    Li Y, Zhao GY, Zhou XF, Pan LN, Ren Y (2010) Resistive switching behavior in amorphous and crystalline TiO2 thin films by sol-gel process. J Sol-Gel Sci Technol 56:61–65CrossRefGoogle Scholar
  21. 21.
    Sun B, Wu JH, Jia XJ, Lou FM, Chen (2015) Preparation and light-controlled resistive switching memory behavior of CuCr2O4. J Sol-Gel Sci Technol 75:664–669CrossRefGoogle Scholar
  22. 22.
    Jia JQ, Gao JH, He Y, Zhao GY, Ren Y (2018) Resistive switching effect of YBa2Cu3O7–x/Nb:SrTiO3 heterostructure. Mater Res Bull 107:328–332CrossRefGoogle Scholar
  23. 23.
    Xu ZT, Jin KJ, Gu L, Jin YL, Ge C, Wang C, Guo HZ, Lu HB, Zhao RQ, Yang GZ (2012) Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 8:1279–284CrossRefGoogle Scholar
  24. 24.
    Yang F, Zhang H, Liu ZY, Jiang YR, Han MY, Chang FG (2014) Photovoltaic effect of YBa2Cu3O7–δ/SrTiO3:Nb heterojunction annealed in different oxygen partial pressure. Mater Lett 130:51–53CrossRefGoogle Scholar
  25. 25.
    Bai Y, Wang ZJ, Chen YN, Cui JZ (2016) Resistive switching and modulation of Pb(Zr0.4Ti0.6)O3/Nb:SrTiO3 heterostructures. ACS Appl Mater Inter 8:32948–32955CrossRefGoogle Scholar
  26. 26.
    Lipp E, Shahar Z, Bittel BC, Lenahan PM (2011) Trap-assisted conduction in Pt-gated Gd2O3/Si capacitors. J Appl Phys 109:695–314CrossRefGoogle Scholar
  27. 27.
    Yang TH, Harn YW, Chiu KC, Fan CL, Wu JM (2012) Promising electron field emitters composed of conducting perovskite LaNiO3 shells on ZnO nanorod arrays. J Mater Chem 22:17071CrossRefGoogle Scholar
  28. 28.
    Goux L, Czarnecki P, Chen YY, Pantisano L, Wang XP, Degraeve R, Govoreanu B, Jurczak M, Wouters DJ, Altimime L (2010) Evidences of oxygen-mediated resistive-switching mechanism in TiN/HfO2/Pt cells. Appl Phys Lett 97:243509CrossRefGoogle Scholar
  29. 29.
    Andreasson BP, Janousch M, Staub U, Meijer GI, Ramar A, Krbanjevic J, Schaeublin R (2009) Origin of oxygen vacancies in resistive switching memory devices. J Phys: Conf Ser 190:012074Google Scholar
  30. 30.
    Tomio T, Miki H, Tabata H, Kawai T, Kawai S (1994) Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping. J Appl Phys 76:5886–5890CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiqiang Jia
    • 1
    Email author
  • Jianhua Gao
    • 2
  • Yang Ren
    • 1
  • Gaoyang Zhao
    • 1
    • 2
  1. 1.Advanced Materials Analysis and Test CenterXi’an University of TechnologyXi’anChina
  2. 2.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations