Advertisement

Preparation of CO2-adsorbable amine-functionalized polysilsesquioxanes containing cross-linked structures without using surfactants and strong acid or base catalysts

  • Yusaku Sainohira
  • Koki Fujino
  • Atsushi Shimojima
  • Kazuyuki Kuroda
  • Yoshiro KanekoEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • 25 Downloads

Abstract

In this study, we prepared a series of amine-functionalized polysilsesquioxanes (PSQs) containing cross-linked structures via the hydrolytic condensation of mixtures of amino-group-containing organotrialkoxysilanes and bridged organoalkoxysilanes in water under CO2 gas bubbling, followed by lyophilization and heat treatment at 120 °C for 4 h. Among the resulting materials, the amine-functionalized PSQ (PSQ-Am-CL-0.67) prepared from a mixture of 3-aminopropyltrimethoxysilane and bis[3-(trimethoxysilyl)propyl]amine (molar ratio 1:1) as the starting materials in CO2-gas-bubbling water with a solution concentration of 0.67 mol/L exhibited relatively high CO2 adsorption capacity under dry conditions (2.30 mmol(CO2)/g(material)). Moreover, even after repeating the adsorption and desorption of CO2 10 times, the CO2 adsorption capacity of PSQ-Am-CL-0.67 did not noticeably reduce, indicating that it could be used repeatedly as a CO2 capture material.

Highlights

  • Amine-functionalized polysilsesquioxanes (PSQs) containing cross-linked structures were prepared.

  • The resulting PSQs exhibited a relatively high CO2 adsorption capacity under dry conditions.

  • The resulting PSQs can be used repeatedly as CO2 capture materials.

Keywords

Polysilsesquioxane Hydrolytic condensation Carbon dioxide adsorption Porous material 

Notes

Acknowledgements

This work was partly carried out at the Joint Research Center for Environmentally Conscious Technologies in Materials Science (project No. 30003) at ZAIKEN, Waseda University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5072_MOESM1_ESM.docx (3.5 mb)
Supplementary figures.

References

  1. 1.
    Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenh Gas Con 1:37–46CrossRefGoogle Scholar
  2. 2.
    Luis P (2016) Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination 380:93–99CrossRefGoogle Scholar
  3. 3.
    Hiyoshi N, Yogo K, Yashima T (2005) Adsorption of carbon dioxide on aminosilane-modified mesoporous silica. J Jpn Petrol Inst 48:29–36CrossRefGoogle Scholar
  4. 4.
    Loganathan S, Ghoshal AK (2017) Amine tethered pore-expanded MCM-41: a promising adsorbent for CO2 capture. Chem Eng J 308:827–839CrossRefGoogle Scholar
  5. 5.
    Sanz-Pérez ES, Dantas TCM, Arencibia A, Calleja G, Guedes APMA, Araujo AS, Sanz R (2017) Reuse and recycling of amine-functionalized silica materials for CO2 adsorption. Chem Eng J 308:1021–1033CrossRefGoogle Scholar
  6. 6.
    Lashaki MJ, Sayari A (2018) CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chem Eng J 334:1260–1269CrossRefGoogle Scholar
  7. 7.
    Laine RM, Zhang C, Sellinger A, Viculis L (1998) Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Appl Organomet Chem 12:715–723CrossRefGoogle Scholar
  8. 8.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123:11420–11430CrossRefGoogle Scholar
  9. 9.
    Kim KM, Chujo Y (2003) Organic–inorganic hybrid gels having functionalized silsesquioxanes. J Mater Chem 13:1384–1391CrossRefGoogle Scholar
  10. 10.
    Kaneko Y, Iyi N, Matsumoto T, Kitamura K (2005) Preparation of higher-ordered inorganic–organic nanocomposite composed of rodlike cationic polysiloxane and polyacrylate. J Mater Chem 15:1572–1575CrossRefGoogle Scholar
  11. 11.
    Tanaka K, Adachi S, Chujo Y (2009) Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A: Polym Chem 47:5690–5697CrossRefGoogle Scholar
  12. 12.
    Yu X, Zhong S, Li X, Tu Y, Yang S, Van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD (2010) A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc 132:16741–16744CrossRefGoogle Scholar
  13. 13.
    Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775–2782CrossRefGoogle Scholar
  14. 14.
    Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  15. 15.
    Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746CrossRefGoogle Scholar
  16. 16.
    Sun J, Chen Y, Zhao L, Chen Y, Qi D, Choi KM, Shin DS, Jiang J (2013) Porphyrin-POSS molecular hybrids. Chem Eur J 19:12613–12618CrossRefGoogle Scholar
  17. 17.
    Alves F, Nischang I (2013) Tailor-made hybrid organic–inorganic porous materials based on polyhedral oligomeric silsesquioxanes (POSS) by the step-growth mechanism of thiol-ene “click” chemistry. Chem Eur J 19:17310–17313CrossRefGoogle Scholar
  18. 18.
    Guo M, David É, Fréchette M, Demarquette NR (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: dielectric, thermal and rheological properties. Polymer 115:60–69CrossRefGoogle Scholar
  19. 19.
    Li Y, Dong XH, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang WB, Cheng SZD (2017) Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 125:303–329CrossRefGoogle Scholar
  20. 20.
    Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125CrossRefGoogle Scholar
  21. 21.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRefGoogle Scholar
  22. 22.
    Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632CrossRefGoogle Scholar
  23. 23.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  24. 24.
    Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K (2004) Hexagonal-structured polysiloxane material prepared by sol–gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater 16:3417–3423CrossRefGoogle Scholar
  25. 25.
    Kaneko Y, Iyi N, Matsumoto T, Kitamura K (2005) Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer 46:1828–1833CrossRefGoogle Scholar
  26. 26.
    Kaneko Y, Iyi N (2007) Sol–gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered nanostructure. Z Kristallogr 222:656–662Google Scholar
  27. 27.
    Kaneko Y, Toyodome H, Shoiriki M, Iyi N (2012) Preparation of ionic silsesquioxanes with regular structures and their hybridization. Int J Polym Sci 2012: 684278Google Scholar
  28. 28.
    Toyodome H, Kaneko Y, Shikinaka K, Iyi N (2012) Preparation of carboxylate group-containing rod-like polysilsesquioxane with hexagonally stacked structure by sol–gel reaction of 2-cyanoethyltriethoxysilane. Polymer 53:6021–6026CrossRefGoogle Scholar
  29. 29.
    Kaneko Y, Toyodome H, Mizumo T, Shikinaka K, Iyi N (2014) Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem Eur J 20:9394–9399CrossRefGoogle Scholar
  30. 30.
    Harada A, Shikinaka K, Ohshita J, Kaneko Y (2017) Preparation of a one-dimensional soluble polysilsesquioxane containing phosphonic acid side-chain groups and its thermal and proton-conduction properties. Polymer 121:228–233CrossRefGoogle Scholar
  31. 31.
    Kaneko Y (2018) Ionic silsesquioxanes: Preparation, structure control, characterization, and applications. Polymer 144:205–224CrossRefGoogle Scholar
  32. 32.
    Kaneko Y, Shoiriki M, Mizumo T (2012) Preparation of cage-like octa(3-aminopropyl)silsesquioxane trifluoromethanesulfonate in higher yield with a shorter reaction time. J Mater Chem 22:14475–14478CrossRefGoogle Scholar
  33. 33.
    Tokunaga T, Shoiriki M, Mizumo T, Kaneko Y (2014) Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J Mater Chem C 2:2496–2501CrossRefGoogle Scholar
  34. 34.
    Ishii T, Mizumo T, Kaneko Y (2014) Facile preparation of ionic liquid containing silsesquioxane framework. Bull Chem Soc Jpn 87:155–159CrossRefGoogle Scholar
  35. 35.
    Tokunaga T, Koge S, Mizumo T, Ohshita J, Kaneko Y (2015) Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym Chem 6:3039–3045CrossRefGoogle Scholar
  36. 36.
    Ishii T, Enoki T, Mizumo T, Ohshita J, Kaneko Y (2015) Preparation of imidazolium-type ionic liquids containing silsesquioxane frameworks and their thermal and ion-conductive properties. RSC Adv 5:15226–15232CrossRefGoogle Scholar
  37. 37.
    Harada A, Koge S, Ohshita J, Kaneko Y (2016) Preparation of a thermally stable room temperature ionic liquid containing cage-like oligosilsesquioxane with two types of side-chain groups. Bull Chem Soc Jpn 89:1129–1135CrossRefGoogle Scholar
  38. 38.
    Imai K, Kaneko Y (2017) Preparation of ammonium-functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation. Inorg Chem 56:4133–4140CrossRefGoogle Scholar
  39. 39.
    Matsumoto T, Kaneko Y (2018) Selective and high-yielding preparation of ammonium-functionalized cage-like octasilsesquioxanes using superacid catalyst in dimethyl sulfoxide. Chem lett 47:864–867CrossRefGoogle Scholar
  40. 40.
    Yanagie M, Kaneko Y (2018) Preparation of irrefrangible polyacrylamide hybrid hydrogels using water-dispersible cyclotetrasiloxane or polyhedral oligomeric silsesquioxane containing polymerizable groups as cross-linkers. Polym Chem 9:2302–2312CrossRefGoogle Scholar
  41. 41.
    Liu J, Kaneko Y (2018) Preparation of polyhedral oligomeric silsesquioxanes containing carboxyl side-chain groups and isolation of a cage-like octamer using clay mineral. Bull Chem Soc Jpn 91:1120–1127CrossRefGoogle Scholar
  42. 42.
    Maeda D, Ishii T, Kaneko Y (2018) Effect of lengths of substituents in imidazolium groups on the preparation of imidazolium-salt-type ionic liquids containing polyhedral oligomeric silsesquioxane structures. Bull Chem Soc Jpn 91:1112–1119CrossRefGoogle Scholar
  43. 43.
    Matsumoto T, Kaneko Y (2019) Effect of reaction temperature and time on the preferential preparation of cage octamer and decamer of ammonium-functionalized POSSs. Bull Chem Soc Jpn 92:1060–1067CrossRefGoogle Scholar
  44. 44.
    Maeda D, Matsukawa K, Kusaka Y, Kaneko Y (2019) Preparation of a soluble polysilsesquioxane containing macrocyclic structure and capture of palladium ion. Polym J 51:439–447CrossRefGoogle Scholar
  45. 45.
    Kong Y, Shen X, Cui S, Fan M (2015) Facile synthesis of amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via solvothermal-assisted sol–gel process and supercritical drying. Green Chem 17:3436–3445CrossRefGoogle Scholar
  46. 46.
    Kong Y, Shen X, Fan M, Yang M, Cui S (2016) Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chem Eng J 283:1059–1068CrossRefGoogle Scholar
  47. 47.
    Ojo KO, Golovko LV, Gomza YP, Vasiliev AN (2012) Mesoporous silsesquioxanes with high contents of surface amine groups. Silicon 4:189–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan
  2. 2.Department of Applied Chemistry, Faculty of Science and EngineeringWaseda UniversityShinjuku-kuJapan
  3. 3.Kagami Memorial Research Institute for Materials Science and TechnologyWaseda UniversityShinjuku-kuJapan

Personalised recommendations