Advertisement

Sol–gel synthesis of upconversion perovskite/attapulgite heterostructures for photocatalytic fixation of nitrogen

  • Haiguang Zhang
  • Xiazhang LiEmail author
  • Huan Su
  • Xiaofan Chen
  • Shixiang Zuo
  • Xiangyu Yan
  • Wenjie Liu
  • Chao YaoEmail author
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 21 Downloads

Abstract

Ammonia synthesis consumes large amounts of energy in traditional industry and causes considerable air pollution to the atmosphere. Therefore, developing green strategies and novel catalysis for NH3 synthesis under ambient conditions using renewable energy is strongly desired. In this work, Er-doped lanthanum cobaltite/attapulgite composites (LaCoO3:Er3+/ATP) were prepared by a sol–gel method. The influence of the Er doping ratio and LaCoO3:Er3+ loading amount on the generation rate of ammonia under visible-light irradiation were investigated. The results show that Er3+-doped LaCoO3 can convert visible light into ultraviolet light and reach the highest conversion rate when the doping amount of the Er element is 6 mol%, which enhances the utilization of solar energy. ATP contributes to the adsorption of N2 and the Co dopant weakens the N≡N bond favoring the activation of N2. Moreover, a direct Z-scheme heterostructure is constructed between LaCoO3:Er3+ and ATP when the loading amount is 10 wt%, which facilitates the separation of charge carriers and preserves the high redox potentials, leading to the enhanced photocatalytic nitrogen fixation performance.

Highlights

  • LaCoO3:Er3+/ATP nanocomposite prepared by sol-gel method.

  • Er3+ doped LaCoO3 convert visible light into ultraviolet light.

  • Co dopant weakens the N≡N bond favoring the activation of N2.

  • Z-scheme LaCoO3:Er3+/ATP enhances the potantial for nitrogen fixation.

Keywords

Attapulgite LaCoO3 Photocatalysis Upconversion Photocatalytic fixation nitrogen 

Notes

Acknowledgements

This study was funded by the National Science Foundation of China (51674043 and 51702026), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0831).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Drzeżdżon J, Jacewicz D, Chmurzyński L (2018) The impact of environmental contamination on the generation of reactive oxygen and nitrogen species – consequences for plants and humans. Environ Int 119:133–151CrossRefGoogle Scholar
  2. 2.
    Emmanuel D, Owusu-Sekyere E, Owusu V, Jordaan H (2016) Impact of agricultural extension service on adoption of chemical fertilizer: implications for rice productivity and development in Ghana. NJAS-Wagen J Life Sci 79(2016):41–49CrossRefGoogle Scholar
  3. 3.
    Quader AKMA (2003) Natural gas and the fertilizer industry. Energy Sustain Dev 7(2):40–48CrossRefGoogle Scholar
  4. 4.
    Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium-dioxide. Cheminform 9(6):7189–7193Google Scholar
  5. 5.
    Li R (2018) Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis. Chinese J Catal 39(7):1180–1188CrossRefGoogle Scholar
  6. 6.
    Xue X, Chen R, Yan C, Zhao P, Hu Y, Zhang W, Yang S, Jin Z (2018) Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res 11:1–21CrossRefGoogle Scholar
  7. 7.
    Wu S, Tan X, Liu K, Lei J, Wang L, Zhang J (2018) TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen. Catal Today.  https://doi.org/10.1016/j.cattod.2018.11.043
  8. 8.
    Ding R, Cao S, Chen H, Jiang F, Wang X (2019) Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation. Colloids Surf Physicochem Eng Aspects 563:263–270CrossRefGoogle Scholar
  9. 9.
    Xiao C, Zhang L, Wang K, Wang H, Zhou Y, Wang W (2018) A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl Catal B Environ 239:260–267CrossRefGoogle Scholar
  10. 10.
    Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78(1):561–569CrossRefGoogle Scholar
  11. 11.
    Rabbani M, Rahimi R, Farajnejad Ghadi H (2018) Photocatalytic application of BiFeO3 synthesized via a facile microwave-assisted solution combustion method. J Sol Gel Sci Technol 87(2):340–346CrossRefGoogle Scholar
  12. 12.
    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4(9):2917–2940CrossRefGoogle Scholar
  13. 13.
    Moniruddin M, Ilyassov B, Zhao X, Smith E, Serikov T, Ibrayev N, Asmatulu R, Nuraje N (2018) Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater Today 7:246–259Google Scholar
  14. 14.
    Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu SS, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy 37(13):10451–10456CrossRefGoogle Scholar
  15. 15.
    Lv M, Sun X, Wei S, Shen C, Mi Y, Xu X (2017) Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting. ACS Nano 11(11):11441–11448CrossRefGoogle Scholar
  16. 16.
    Behzadifard Z, Shariatinia Z, Jourshabani M (2018) Novel visible light driven CuO/SmFeO3 nanocomposite photocatalysts with enhanced photocatalytic activities for degradation of organic pollutants. J Mol Liq 262:533–548CrossRefGoogle Scholar
  17. 17.
    Li X, Yan X, Zuo S, Lu X, Luo S, Li Z, Yao C, Ni C (2017) Construction of LaFe1−xMnxO3/attapulgite nanocomposite for photo-SCR of NOx at low temperature. Chem Eng J 320:211–221CrossRefGoogle Scholar
  18. 18.
    Li X, Shi H, Wang T, Zhang Y, Lu X, Zuo S, Li Z, Yao C (2018) Visible light driven Z-scheme Fe2O3/SmFeO3/palygorskite nanostructure for photo-SCR of NOx. J Taiwan Inst Chem Eng 89:119–128CrossRefGoogle Scholar
  19. 19.
    Li X, Shi H, Zhu W, Zuo S, Lu X, Luo S, Li Z, Yao C, Chen Y (2018) Nanocomposite LaFe1-xNixO3/Palygorskite catalyst for photo-assisted reduction of NOx: effect of Ni doping. Appl Catal B Environ 231:92–100CrossRefGoogle Scholar
  20. 20.
    Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854CrossRefGoogle Scholar
  21. 21.
    Anwer H, Park J-W (2019) Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@Bi2WO6 core@shell composite for bisphenol A degradation in solar light. Appl Catal B Environ 243:438–447CrossRefGoogle Scholar
  22. 22.
    Ullah S, Ferreira-Neto EP, Hazra C, Parveen R, Rojas-Mantilla HD, Calegaro ML, Serge-Correales YE, Rodrigues-Filho UP, Ribeiro SJL (2019) Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-vis-NIR illumination. Appl Catal B Environ 243:121–135CrossRefGoogle Scholar
  23. 23.
    Xu D-X, Lian Z-W, Fu M-L, Yuan B, Shi J-W, Cui H-J (2013) Advanced near-infrared-driven photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+,Tm3+@TiO2 core@shell microcrystals. Appl Catal B Environ 142-143:377–386CrossRefGoogle Scholar
  24. 24.
    Zhang J, Qiao B, Liang Z, Zuo P, Wu Q, Xu Z, Piao L, Zhao S (2018) Near-infrared light-induced photocatalysis of NaYF4:Yb, Tm@Cu2O core-shell nanocomposites. Opt Mater 84:89–93CrossRefGoogle Scholar
  25. 25.
    Gong S, Li M, Ren Z, Yang X, Li X, Shen G, Han G (2015) Polarization-modified upconversion luminescence in Er-doped single-crystal perovskite PbTiO3 nanofibers. J Phys Chem C 119(30):17326–17333CrossRefGoogle Scholar
  26. 26.
    Patra A, Friend CS, Kapoor R, Prasad PN (2003) Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites. Chem Mater 15(19):3650–3655CrossRefGoogle Scholar
  27. 27.
    Grabowska E (2016) Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Appl Catal B Environ 186:97–126CrossRefGoogle Scholar
  28. 28.
    Yan X, Xiazhang LI, Guanghui LU, Longqing YU, Luo S, Yao C (2017) Preparation of La1-xCexNiO3/attapulgite nanocomposite and its photo-selective catalytic reduction for NOx removal. J Chin Ceram Soc 45(5):743–748Google Scholar
  29. 29.
    Huang DL, Chen S, Zeng GM, Gong XM, Zhou CY, Cheng M, Xue WJ, Yan XL, Li J (2019) Artificial Z-scheme photocatalytic system: What have been done and where to go?. Coordin Chem Rev 385:44–80CrossRefGoogle Scholar
  30. 30.
    Yu JG, Wang SH, Low JX, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890CrossRefGoogle Scholar
  31. 31.
    Wang XZ, Wu JG, Jin TZ, Shi N, Xu GX (1988) FT-IR study and normal vibration analysis of rare earth oxalates. Microchim Acta 94(1–6):235–238CrossRefGoogle Scholar
  32. 32.
    Gang X, Zheng LZ, Yang X, Lu L, Xin W (1997) Characterization of perovskite-type LaCoO3 nanocrystals prepared by a stearic acid sol-gel process. J Mater Sci Lett 16(13):1064–1068CrossRefGoogle Scholar
  33. 33.
    Prasad VR, Damodaraiah S, Seshadri M, Babu S, Ratnakaram YC (2017) Intense orange emission in Pr3+ and NIR emission at 1.53 μm in Er3+ doped zinc phosphate glasses for potential broadband optical amplifier. Indian J Phys 91(1):1–11CrossRefGoogle Scholar
  34. 34.
    Li H, Shang J, Shi J, Zhao K, Zhang L (2016) Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8(4):1986–1993CrossRefGoogle Scholar
  35. 35.
    Lu Y, Yang Y, Zhang T, Ge Z, Chang H, Xiao P, Xie Y, Hua L, Li Q, Li H (2016) Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10(11):10507CrossRefGoogle Scholar
  36. 36.
    Li XY, Zhang DY, Liu XQ, Shi LY, Sun LB (2016) A tandem demetalization–desilication strategy to enhance the porosity of attapulgite for adsorption and catalysis. Chem Eng Sci 141(2):184–194CrossRefGoogle Scholar
  37. 37.
    Wang K, Gu G, Hu S, Zhang J, Sun X, Wang F, Li P, Zhao Y, Fan Z, Zou X (2019) Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: experiment and DFT simulation analysis. Chem Eng J 368:896–904CrossRefGoogle Scholar
  38. 38.
    Chen X, Li N, Kong Z, Ong WJ, Zhao X (2017) Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects Mater Horiz 5:9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouP. R. China
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations