Advertisement

Polyamine-decorated mesocellular silica foam nanocomposites: Effect of the reaction parameters on the grafted polymer content and silica mesostructure

  • H. Iván Meléndez-OrtizEmail author
  • Bertha Puente-Urbina
  • Griselda Castruita-de León
  • Esmeralda Saucedo-Salazar
  • Jesús Alfonso Mercado-Silva
  • Luis Alfonso García-Cerda
Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • 3 Downloads

Abstract

Polyvinylamine-coated mesocellular silica foam (MCF) was synthesized by grafting poly(n-vinylformamide) (PNVF) followed by the acid hydrolysis of the formamide groups with hydrochloric acid (HCl) and subsequent neutralization with sodium hydroxide (NaOH). In order to graft PNVF, MCF silica was previously functionalized with the coupling agent vinyltrimehtoxysilane (VTMS). The PNVF content in the hybrid material was tailored by varying some reaction parameters such as monomer concentration, reaction time, and temperature. The grafted polymer content was determined by thermogravimetric analysis (TGA) and ranged from 27% to 50%. Additionally, small-angle X-ray scattering (SAXS), infrared spectroscopy (FT-IR), nitrogen adsorption–desorption analyses, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques confirmed the grafting of PNVF onto MCF. The N2 adsorption–desorption studies showed that the textural properties of the pristine MCF decreased as the amount of grafted PNVF increased confirming the deposition of polymer into silica. However, according to SAXS, SEM, and TEM studies, the mesostructure of MCF was maintained even after acid hydrolysis of PNVF and its subsequent neutralization to obtain PVAm.

Highlights

  • Amine polymer/silica foam hybrid material was obtained.

  • Covalent grafting of PNVF onto mesocellular silica foam (MCF).

  • The content of the grafted PNVF was tailored by varying polymerization conditions.

  • Grafted PNVF turns into PVAm by acid-catalyzed hydrolysis.

  • Acid hydrolysis of PNVF does not affect the morphology of MCF.

Keywords

Mesocellular silica foam Covalent grafting Radical polymerization Poly(vinylamine) Nanocomposite 

Notes

Acknowledgements

This work was funded by the CONACYT-México (Fondo SENER-Hidrocarburos) under Grant no. 267962. H.I.M.-O. and G.C.-d.L. are particularly grateful to the program Cátedras-CONACyT (Mexico). Also, we thank to E.D. and J.A.C. from CIQA for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kishor R, Ghoshal AK (2017) Ind Eng Chem Res 56:6078–6087CrossRefGoogle Scholar
  2. 2.
    Kim S, Ida J, Guliants VV, Lin JYS (2005) J Phys Chem B 109:6287–6293CrossRefGoogle Scholar
  3. 3.
    Liang J, Liang ZB, Zou RQ, Zhao YL (2017) Adv Mater 29:1701139CrossRefGoogle Scholar
  4. 4.
    Chang F, Wang G, Xie YC, Zhang M, Zhang J, Yang HJ, Hu XF (2013) Ceram Int 39:3823–3829CrossRefGoogle Scholar
  5. 5.
    Kim HJ, Yang HC, Chung DY, Yang IH, Choi YJ, Moon JK (2015) J Chem 2015:202867Google Scholar
  6. 6.
    Kishor R, Ghoshal AK (2017) Micro Meso Mater 246:137–146CrossRefGoogle Scholar
  7. 7.
    Ehlert N, Mueller PP, Stieve M, Lenarz T, Behrens P (2013) Chem Soc Rev 42:3847–3861CrossRefGoogle Scholar
  8. 8.
    Lee DW, Yoo BRJ (2016) Ind Eng Chem 38:1–12CrossRefGoogle Scholar
  9. 9.
    Costa ROR, Lameiras FS, Nunes EHM, Vasconcelos DCL, Vasconcelos WL (2016) Ceram Int 42:3465–3472CrossRefGoogle Scholar
  10. 10.
    Yan XL, Zhang L, Zhang Y, Qiao K, Yan ZF, Komarneni S (2011) Chem Eng J 168:918–924CrossRefGoogle Scholar
  11. 11.
    Zhao J, Simeon F, Wang Y, Luo G, Hatton TA (2012) RSC Adv 2:6509–6519CrossRefGoogle Scholar
  12. 12.
    Yan W, Tang J, Bian Z, Hu J, Liu H (2012) Ind Eng Chem Res 51:3653–3662CrossRefGoogle Scholar
  13. 13.
    Wach A, Drozdek M, Dudek B, Biazik M, Łątka P, Michalik M, Kust́rowski P (2015) J Phys Chem C 119:19954–19966CrossRefGoogle Scholar
  14. 14.
    Brunella V, Jadhav SA, Miletto I, Berlier G, Ugazio E, Sapino S, Scalarone D (2016) React Funct Polym 98:31–37CrossRefGoogle Scholar
  15. 15.
    Hao YW, Zhao J, Wang G, Cao LQ, Wang JD, Yue F (2017) Fiber Polym 18:2476–2480CrossRefGoogle Scholar
  16. 16.
    Huang L, Wu J, Liu MY, Mao LC, Huang HY, Wan Q, Dai YF, Wen YQ, Zhang XY, Wei Y (2017) J Colloid Interf Sci 508:396–404CrossRefGoogle Scholar
  17. 17.
    Schmidt-Winkel P, Lukens WW, Zhao D, Yang P, Chmelka BF, Stucky GD (1999) J Am Chem Soc 121:254–255CrossRefGoogle Scholar
  18. 18.
    Zhou XF, Wang B, Song ST, Duan AJ, Zhao Z, Gong YJ, Xu CM, Chi KB (2017) J Porous Mater 24:941–946CrossRefGoogle Scholar
  19. 19.
    Vilarrasa-García E, Cecilia JA, Santos SML, Cavalcante Jr CL, Jiménez-Jiménez J, Azevedo DCS, Rodríguez-Castellón E (2014) Micro Meso Mater 187:125–134CrossRefGoogle Scholar
  20. 20.
    Jamalluddin NA, Abdullah AZ (2016) J Mol Catal A 414:94–107CrossRefGoogle Scholar
  21. 21.
    Choi SR, Jang DJ, Kim S, An S, Lee J, Oh E, Kim J (2014) J Mater Chem B 2:616–619CrossRefGoogle Scholar
  22. 22.
    Pelton R (2014) Langmuir 30:15373–15382CrossRefGoogle Scholar
  23. 23.
    Yamamoto K, Imamura Y, Nagatomo E, Serizawa T, Muraoka Y, Akashi M (2001) Macromolecules 34:8014–8020CrossRefGoogle Scholar
  24. 24.
    Yin FQ, Zhuang LZ, Luo XY, Chen SX (2018) Appl Surf Sci 434:514–521CrossRefGoogle Scholar
  25. 25.
    Zhao S, Cao X, Ma Z, Wang Z, Qiao Z, Wang J, Wang S (2015) Ind Eng Chem Res 54:5139–5148CrossRefGoogle Scholar
  26. 26.
    Massah AR, Kalbasi RJ, Kaviyani S (2013) RSC Adv 3:12816–12825CrossRefGoogle Scholar
  27. 27.
    Shandil Y, Dautoo UK, Chauhan GS (2017) Chem Eng J 316:978–987CrossRefGoogle Scholar
  28. 28.
    Chaikittisilp W, Khunsupat R, Chen TT, Jones CW (2011) Ind Eng Chem Res 50:14203–14210CrossRefGoogle Scholar
  29. 29.
    Chen Y, Ho WSW (2016) J Membrane Sci 514:376–384CrossRefGoogle Scholar
  30. 30.
    Kim TJ, Vralstad H, Sandru M, Hägg MB (2013) J Membrane Sci 428:218–224CrossRefGoogle Scholar
  31. 31.
    Tong Z, Ho WSW (2017) J Membrane Sci 543:202–211CrossRefGoogle Scholar
  32. 32.
    Mishra DK, Tripathy J, Srivastava A, Mishra MM, Behari K (2008) Carbohydr Polym 74:632–639CrossRefGoogle Scholar
  33. 33.
    Zataray J, Aguirre A, de la Cal JC, Leiza JR (2013) Macromol Symp 333:80–92CrossRefGoogle Scholar
  34. 34.
    Verneker VRP, Santhanalakshmi KN (1984) J Polym Sci A 22:3217–3224Google Scholar
  35. 35.
    Molenda M, Dziembaj R, Drozdek M, Podstawka E, Proniewicz LM (2008) Solid State Ionics 179:197–201CrossRefGoogle Scholar
  36. 36.
    Shi L, Berkland C (2007) Macromolecules 40:4635–4643CrossRefGoogle Scholar
  37. 37.
    Yao M, Dong Y, Feng X, Hub X, Jia A, Xie G, Hu G, Lu J, Luo M, Fan M (2014) Fuel 123:66–72CrossRefGoogle Scholar
  38. 38.
    Choi M, Kleitz F, Liu D, Lee HY, Ahn WS, Ryoo R (2005) J Am Chem Soc 127:1924–1932CrossRefGoogle Scholar
  39. 39.
    Xin C, Zhao N, Zhan H, Xiao F, Wei W, Sun Y (2014) J Colloid Interf Sci 433:176–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Iván Meléndez-Ortiz
    • 1
    Email author
  • Bertha Puente-Urbina
    • 2
  • Griselda Castruita-de León
    • 1
  • Esmeralda Saucedo-Salazar
    • 2
  • Jesús Alfonso Mercado-Silva
    • 2
  • Luis Alfonso García-Cerda
    • 2
  1. 1.CONACyT–Centro de Investigación en Química AplicadaBlvd. Enrique Reyna Hermosillo # 140SaltilloMexico
  2. 2.Centro de Investigación en Química AplicadaBlvd. Enrique Reyna Hermosillo # 140SaltilloMexico

Personalised recommendations