Advertisement

The influence of Sc3+ ions on the microstructure, electrical, and gas-sensing properties of Ni–Co–Sc ferrite

  • C. DorofteiEmail author
  • L. Leontie
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 6 Downloads

Abstract

The influence of Sc3+ ion content on the microstructure, electrical, and gas-sensing properties of Ni0.5Co0.5ScxFe2–xO4 (x = 0.0, 0.05, 0.1 and 0.2) ferrites synthesized by a novel self-combustion method using polyvinyl alcohol as the colloidal medium, was studied. X-ray diffraction, X-ray photon spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX) were employed to characterize the structure and morphology properties of these ferrites. The gas-sensing properties of hydrogen, methane, ethanol, methylene chloride, and benzene were investigated. The samples show p-type semiconducting properties for the studied gases within the temperature range of 100–380 °C. The results revealed that the partial substitution of Fe3+ by Sc3+ ions on the octahedral sites of the spinel structure of Ni0.5Co0.5Fe2O4 ferrite has a favorable effect on the sensing activity of this ferrite. The increase of the degree of Fe3+ ion substitution by Sc3+ ions up to x = 0.2 in the basic composition (Ni0.5Co0.5Fe2O4) results in the increase of the response and the decrease of the optimal operating temperature for all the studied gases. The sensor element Ni0.5Co0.5Sc0.2Fe1.8O4 (x = 0.2) has the best response to benzene (2.57) and to methylene chloride (2.10) at the operating temperature of 175 °C for a gas concentration of 500 ppm and a relative humidity of 50%.

Highlights

  • The Ni0.5Co0.5ScxFe2–xO4 (0 < x < 0.2) ferrites have been prepared by self-combustion method.

  • The porosity is amplified by a system with open pores distributed along the grain agglomerations.

  • The increase of substitution by Sc results in the increase of sensor response to the studied gases.

  • The substitution with Sc ions has the effect of decreasing the optimal operating temperature.

  • The Ni0.5Co0.5Sc0.2Fe1.8O4 sensors have the best response to benzene and methylene chloride gas.

Keywords

Ni–Co–Sc ferrite Self-combustion Structural properties Electrical properties Gas-sensing properties 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Velhal NB, Patil ND, Shelke AR, Deshpande NG, Puri VR (2015) Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Advances 5 097166:1–11.  https://doi.org/10.1063/1.4931908 Google Scholar
  2. 2.
    Šutkaa A, Grossab KA (2016) Spinel ferrite oxide semiconductor gas sensors. Sens Actuators B 222:95–105CrossRefGoogle Scholar
  3. 3.
    Tanga X, Zhang B, Xiao C, Zhoub H, Wanga X, Hea D (2016) Carbon nanotube template synthesis of hierarchical NiCoO2 composite for non-enzyme glucose detection. Sens Actuators B 222:232–239CrossRefGoogle Scholar
  4. 4.
    Tatarchuk T, Bououdina M, Vijaya JJ, John Kennedy L (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Fesenko O, Yatsenko L (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO2016, vol 195. Springer Proceedings in Physics, Lviv, Ukraine, p 305–325  https://doi.org/10.1007/978-3-319-56422-7_22
  5. 5.
    Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2008) Lithium ferrite for gas sensing applications. Sens Actuators B 133:420–425CrossRefGoogle Scholar
  6. 6.
    Ibrahima I, Alia IO, Salamaa TM, Bahgatb AA, Mohamed MM (2016) Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl Catal B 181:389–402CrossRefGoogle Scholar
  7. 7.
    Moussaoui HE, Mahfoud T, Habouti S, Maalam KE, Ali MB, Hamedoun M, Mounkachi O, Masrour R, Hlile EK, Benyoussef A (2016) Synthesis and magnetic properties of tin spinel ferrites doped manganese. J Magn Magn Mater 405:181–186CrossRefGoogle Scholar
  8. 8.
    Xiangfeng C, Chenmou Z (2003) Sulfide-sensing characteristics of MFe2O4 (M=Zn, Cd, Mg and Cu) thick film prepared by co-precipitation method. Sens Actuators B 96:504–508CrossRefGoogle Scholar
  9. 9.
    Kumar R, Singh RR, Barman PB (2014) Cobalt doped nickel zinc ferrite nanoparticles – XRD analyses an insight. Int J Sci & Eng Res 5:12–20Google Scholar
  10. 10.
    Mathew DS, Juang R (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65CrossRefGoogle Scholar
  11. 11.
    Doroftei C, Popa PD, Iacomi F, Leontie L (2014) The influence of Zn2+ ions on the microstructure, electrical and gas sensing properties of La0.8Pb0.2FeO3 perovskite. Sens Actuators B 191:239–245CrossRefGoogle Scholar
  12. 12.
    Doroftei C, Prelipceanu OS, Carlescu A, Leontie L, Prelipceanu M (2018) Porous spinel-type oxide semiconductors for high-performance acetone sensors. In: 2018 International Conference on Development and Application Systems (DAS), IEEE, Suceava, 24–26 May 2018, p 110–114  https://doi.org/10.1109/DAAS.2018.8396081
  13. 13.
    Bangale SV, Patil DR, Bamane SR (2011) Nanostructured spinel ZnFe2O4 for the detection of chlorine gas. Sens Trans J 134:107–119Google Scholar
  14. 14.
    Reddy CVG, Manorama SV, Rao VJ (1999) Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens Actuators B 55:90–95CrossRefGoogle Scholar
  15. 15.
    Comini E, Ferroni M, Guidi V, Fagila G, Martinelli G, Sberverglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuators B 84:26–32CrossRefGoogle Scholar
  16. 16.
    Niu X, Du W, Du W (2004) Preparation and gas sensing properties of ZnM2O4 (M=Fe, Co, Cr). Sens Actuators B 99:405–409CrossRefGoogle Scholar
  17. 17.
    Kapse VD (2015) Preparation of nanocrystalline spinel-type oxide materials for gas sensing applications. Res J Chem Sci 5:7–12Google Scholar
  18. 18.
    Sutka A, Mezinskis G, Lusis A, Stingaciuc M (2012) Gas sensing properties of Zn-doped p-type nickel ferrite. Sens Actuators B 171–172:354–360CrossRefGoogle Scholar
  19. 19.
    Satyanarayana L, Reddy KM, Manorama SV (2003) Synthesis of nanocrystalline Ni1−xCoxMnxFe2−xO4: a material for liquefied petroleum gas sensing. Sens Actuators B 89:62–67CrossRefGoogle Scholar
  20. 20.
    Doroftei C, Popa PD, Iacomi F (2013) Selectivity between methanol and ethanol gas of La-Pb-Fe-O perovskite synthesized by novel method. Sens Actuators A 190:176–180CrossRefGoogle Scholar
  21. 21.
    Thaweechai T, Wisitsoraat A, Laobuthee A, Koonsaeng N (2009) Ethanol sensing of La1-xSrxFeO3 (x=0, 0.1 and 0.3) prepared by metal organic complex decomposition. Kasetsart J (Nat. Sci.) 43:218–223Google Scholar
  22. 22.
    Doroftei C, Popa PD, Iacomi F (2012) Synthesis of nanocrystalline La-Pb-Fe-O perovskite and methanol-sensing characteristics. Sens Actuators B 161:977–981CrossRefGoogle Scholar
  23. 23.
    Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2008) Lithium ferrite for gas sensing applications. Sens Actuators B 133:420–425CrossRefGoogle Scholar
  24. 24.
    Rezlescu N, Popa PD, Rezlescu E, Doroftei C (2008) Microstructure characteristics of some polycrystalline oxide compounds prepared by sol-gel-selfcombustion way for gas sensor applications. Rom J Phys 53:545–555Google Scholar
  25. 25.
    Cullity BD, Stock RS (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  26. 26.
    Akbarnejad RH, Daadmehr V, Rezakhani AT, Tehrani FS, Aghakhani F, Gholipour S (2013) J Supercond Nov Magn 26:429–435CrossRefGoogle Scholar
  27. 27.
    Albuquerque AS, Tolentino MVC, Ardisson JC, Moura FCC, Mendonca R, Macedo WAA (2012) Nanostructured ferrites: structural analysis and catalytic activity. Ceram Int 38:2225–2231CrossRefGoogle Scholar
  28. 28.
    Mittal VK, Chandramohan P, Bera S, Srinivasan MP, Velmurugan S, Narasimhan SV (2006) Cation distribution in NixMg1-xFe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun 137:6–10CrossRefGoogle Scholar
  29. 29.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  30. 30.
    Vijayaraj M, Gopinath CS (2006) On the ”Active Spacer and Stabilizer” Role of Zn in Cu1-xZnxFe2O4 towards selective N-methylaniline from aniline: XPS and catalysis study. J Catal 241:83–95CrossRefGoogle Scholar
  31. 31.
    Mathew T, Shiju NR, Bokade VV, Rao BS, Gopinath CS (2004) Selective catalytic synthesis of 2-ethyl phenol over Cu1-xCoxFe2O4—Kinetics, Catalysis and XPS aspects. Catal Lett 94:223–236CrossRefGoogle Scholar
  32. 32.
    Munoz R, Martos M, Rotaru CM, Beltran H, Cordoncillo E, Escribano P (2006) Influence of the precursors on the formation and properties of the FexCr2-xO3 solid solution. J Eur Ceram Soc 26:1363–1370CrossRefGoogle Scholar
  33. 33.
    Doroftei C, Leontie L (2017) Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv 7:27863–27871CrossRefGoogle Scholar
  34. 34.
    McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529CrossRefGoogle Scholar
  35. 35.
    Leontie L, Doroftei C (2017) Nanostructured spinel ferrites for catalytic combustion of gasoline vapors. Catal Lett 147:2542–2548CrossRefGoogle Scholar
  36. 36.
    Smit J, Wijin HPJ (1961) Les ferrites, Dunot, ParisGoogle Scholar
  37. 37.
    Liu X, Cheng B, Qin H, Song P, Huang S, Zhang R, Hu J, Jiang M (2007) Preparation, electrical and gas-sensing properties of perovskite-type La1−xMgxFeO3 semiconductor materials. J Phys Chem Solids 68:511–515CrossRefGoogle Scholar
  38. 38.
    Zhang L, Qin HW, Song P, Hu JF, Jiang MH (2006) Electric properties and acetone-sensing characteristics of La1−xPbxFeO3 perovskite system. Mater Chem Phys 98:358–362CrossRefGoogle Scholar
  39. 39.
    Doroftei C (2016) Formaldehyde sensitive Zn-doped LPFO thin films obtained by rf sputtering. Sens Actuators B 231:793–799CrossRefGoogle Scholar
  40. 40.
    Song P, Hu J, Qin H, Zhang L (2005) H2-sensing characteristics of nanocrystalline La0.8Pb0.2FeO3 prepared by sol–gel method. J Sol–Gel Sci Technol 35:65–68CrossRefGoogle Scholar
  41. 41.
    Huang S, Qin H, Song P, Liu X, Li L, Zhang R, Hu J, Jiang M (2007) The formaldehyde sensitivity of LaFe1−xZnxO3-based gas sensor. J Mater Sci 42:9973–9977CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Integrated Center for Studies in Environmental Science for North-East RegionAlexandru Ioan Cuza University of IasiIasiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations