Advertisement

Preparation and study of silica and APTES–silica-modified NiFe2O4 nanocomposites for removal of Cu2+ and Zn2+ ions from aqueous solutions

  • J. IsasiEmail author
  • P. Arévalo
  • E. Martin
  • F. Martín-Hernández
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 1 Downloads

Abstract

Silica and (3-aminopropyl)triethoxysilane (APTES)–silica-modified NiFe2O4 samples were successfully synthesized by a two-/three-step process, depending on the sample, including the preparation of nickel ferrite sample by hydrothermal synthesis, the coating of its surface with silica, and the subsequent functionalization with APTES. Samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared (FTIR) analysis, transmission electron microscopy, and MH curves. XRD data of the NiFe2O4 sample shows diffraction maxima that can be indexed in a cubic symmetry of space group Fd-3m with Z = 8, compatible with an inverse spinel-type structure. The estimated average crystalline size is 22 nm. All FTIR spectra show absorption bands between 600 and 400 cm−1, characteristic of spinel-type structure. Bands attributed to the vibration of O–Si–O and Si–O–Si bonds are found in the spectra of the silica-coated samples. APTES–silica-modified NiFe2O4 nanocomposites show an increase in coating thickness as the reaction time with tetraethoxysilane increases. A practically superparamagnetic behavior was found for the synthesized NiFe2O4 sample with a magnetization of 47 emu/g. This value is slightly reduced with the thickness of the nonmagnetic coating. The ultraviolet–visible spectroscopy measurements and titration curves clearly demonstrated that the APTES–silica-modified NiFe2O4 nanocomposites could be efficient materials for the removal of Cu2+ and Zn2+ ions from aqueous solutions. The best adsorption is found in the NiFe2O4@SiO2(3)–APTES(6) sample, while the NiFe2O4@SiO2(6)–APTES(12) sample seems to be the most suitable for its application, considering its better adsorption capacity and its easy separation from the aqueous solution in the presence of an external magnetic field.

Highlights

  • Amino-functionalized NiFe2O4@SiO2 core-shell nanocomposites are prepared.

  • Magnetic cores are obtained by a urea-mediated hydrothermal synthesis.

  • TEM confirms the formation of a uniform coating around magnetic nanoparticles.

  • Cu2+ and Zn2+ adsorption evidence the reaction of the cations with amino groups.

  • Nanocomposites reach an adsorption capacity higher than 10% of their own weight.

Keywords

Nanocomposite Hydrothermal synthesis Magnetic materials Adsorption Pollutant removal 

Notes

Acknowledgements

We thank the ICTS National Center for Electron Microscopy of the UCM for access.

Funding

Fundación Neurociencias y Envejecimiento has supported this work through project 359/2014 as well as MINECO through the project MAT2016-80182-R.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

PA declares that this paper is original, has not been published before, and is not currently being considered for publication elsewhere. He confirms that the paper has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. He further confirms that the order of authors listed in the paper has been approved by all the authors.

References

  1. 1.
    Lingamdinne LP, Koduru JR, Choi Y-L, Chang Y-Y, Yang J-K (2016) Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 165:64–72CrossRefGoogle Scholar
  2. 2.
    Koduru JR, Chang Y-Y, Kim I-S (2014) Low-cost Schizandra chinesis fruit peel for Co(II) removal from aqueous environment: adsorption properties and mechanism. Asian J Chem 26:289–297CrossRefGoogle Scholar
  3. 3.
    Zeng GM, Li X, Huang JH, Zhang C, Zhou CF, Niu J, Shi LJ, He SB, Li F (2011) Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard Mater 185:1304–1310CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Chenb Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257CrossRefGoogle Scholar
  5. 5.
    Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51CrossRefGoogle Scholar
  6. 6.
    Chavan AA, Li H, Scarpellini A, Marras S, Manna L, Athanassiou A, Fragouli D (2015) Elastomeric nanocomposite foams for the removal of heavy metal ions from water. ACS Appl Mater Interfaces 7:14778–14784CrossRefGoogle Scholar
  7. 7.
    Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S (2016) “Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16:2860–2866CrossRefGoogle Scholar
  8. 8.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418CrossRefGoogle Scholar
  9. 9.
    Zhu H-Y, Jiang R, Fu Y-Q, Li R-R, Yao J, Jiang S-T (2016) Novel multifunctional NiFe2O4/ZnO hybrids for dye removal byadsorption, photocatalysis and magnetic separation. Appl Surf Sci 369:1–10CrossRefGoogle Scholar
  10. 10.
    Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304CrossRefGoogle Scholar
  11. 11.
    Khan MA, Ahmad A, Umar K, Nabi SA (2015) Synthesis, characterization, and biological applications of nanocomposites for the removal of heavy metals and dyes. Ind Eng Chem Res 54:76–82CrossRefGoogle Scholar
  12. 12.
    Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274CrossRefGoogle Scholar
  13. 13.
    Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  14. 14.
    Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRefGoogle Scholar
  15. 15.
    Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergström L (2014) Structuring adsorbents and catalysts by processing of porous powders. J Eur Ceram Soc 34:1643–1666CrossRefGoogle Scholar
  16. 16.
    Mohan D, Pittman Jr. CU (2006) Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater B 137:762–811CrossRefGoogle Scholar
  17. 17.
    Wan Ngah WS, Teong LC, Hanafiah MAKM (2010) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRefGoogle Scholar
  18. 18.
    Ali A, Zafar H, Zia M, Haq IU, Rehman A, Phull, Sarfraz Ali J, Hussain A (2016) Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotecnol Sci Appl 9:49–67CrossRefGoogle Scholar
  19. 19.
    Moradi A, Moghadam PN, Hasanzadeh R, Sillanapaa M (2017) Chelating magnetic nanocomposite for the rapid removal of Pb(II) iron from aqueous solutions: characterization, kinetic, isotherm and thermodynamic studies. RSC Adv 7:433–448CrossRefGoogle Scholar
  20. 20.
    Kim E-J, Lee C-S, Chang Y-Y, Chang Y-S (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5:9628–9634CrossRefGoogle Scholar
  21. 21.
    Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8CrossRefGoogle Scholar
  22. 22.
    Warner CL, Chouyyok W, Mackie KE, Neiner D, Saraf LV, Droubay TC, Warner MG, Addleman RShane (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28:3931–3937CrossRefGoogle Scholar
  23. 23.
    Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRefGoogle Scholar
  24. 24.
    Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248CrossRefGoogle Scholar
  25. 25.
    Zhu H-Y, Jiang R, Huang S-H, Yao J, Fu F-Q, Li J-B (2015) Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: facile synthesis, characterization and application to the treatment of dyeing wastewate”. Ceram Int 41:11625–11631CrossRefGoogle Scholar
  26. 26.
    Hajduováa J, Uchmana M, Safarík I, Safaríková M, Slouf M, Pispas S, Stepánek M (2015) Aggregation of superparamagnetic iron oxide nanoparticles in dilute aqueous dispersions: effect of coating by double-hydrophilic block polyelectrolyte. Colloid Surf A 483:1–7CrossRefGoogle Scholar
  27. 27.
    Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Shon HK (2013) Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res 47:4585–4599CrossRefGoogle Scholar
  28. 28.
    Guo T, Jiang W, Ruan Y, Dong L, Liu H, Li H, Zhu W, Li H (2018) Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel. Colloid Surf A 537:243–249CrossRefGoogle Scholar
  29. 29.
    Hammad M, Nica V, Hempelmann R (2017) On-command controlled drug release by diels-Alder reaction using Bi-magnetic core/shell nano-carriers. Colloid Surf B 150:15–22CrossRefGoogle Scholar
  30. 30.
    Li X, Zhao W, Gu J, Li Y, Li L, Niu D, Shi J (2015) Facile synthesis of magnetic core-mesoporous shell structured sub-microspheres decorated with NiO nanoparticles for magnetic recyclable separation of proteins. Micropor Mesopor Mater 207:142–148CrossRefGoogle Scholar
  31. 31.
    Sohrabnezhad Sh, Rajabi SK (2018) The influence of MCM-41 mesoporous shell in photocatalytic activity of magnetic core-shell. J Photochem Photobiol A 350:86–93CrossRefGoogle Scholar
  32. 32.
    Mebert AM, Baglole CJ, Desimone MF, Maysinger D (2017) Nanoengineered silica: properties, applications and toxicity. Food Chem Toxicol 109:753–770CrossRefGoogle Scholar
  33. 33.
    Wang X, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578CrossRefGoogle Scholar
  34. 34.
    Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127CrossRefGoogle Scholar
  35. 35.
    Ta TKH, Trinh M-T, Long NV, Nguyen TTM, Nguyen TLT, Thuoc TL, Phan BT, Mott D, Maenosono S, Tran-Van H, Le VH (2016) Synthesis and surface functionalization of Fe3O4-SiO2 core shell nanoparticles with 3-glycidoxypropyltrimethoxysilaneand1,1-carbonyldiimidazole for bio-applications. Colloid Surf. A 504:376–383CrossRefGoogle Scholar
  36. 36.
    Benrabaa R, Löfbergc A, Caballero JG, Bordes-Richard E, Rubbens A, Vannier R-N, Boukhlouf H, Barama A (2015) Sol–gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane. Catal Commun 58:127–131CrossRefGoogle Scholar
  37. 37.
    Airoldi C, de Farias RF (2000) The use of organofuntionalized silica gel as sequestrating agent for metals. Quim Nova 23:496–503CrossRefGoogle Scholar
  38. 38.
    Hikosakaa R, Nagata F, Tomita M, Kato K (2016) Adsorption and desorption characteristics of DNA onto the surface of amino functional mesoporous silica with various particle morphologies. Colloid Surf B 140:262–268CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Li H, Liu H (2018) Insight into the adsorption of tetracycline onto amino and amino–Fe3+ functionalized mesoporous silica: effect of functionalized groups. J Environ Sci 65:171–178CrossRefGoogle Scholar
  40. 40.
    Hao S, Verlotta A, Aprea P, Pepe F, Caputo D, Zhu W (2016) Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions. Micropor Mesopor Mater 236:250–259CrossRefGoogle Scholar
  41. 41.
    Mochizuki K, Kondou H, Ando K, Kawasumi T, Takahashi J (2016) Degradation of urea mediated by dinickel(II) complexes with the binucleating ligand N,N′-bis[2-(N,N-dimethyl)aminoethyl]-N,N′-dimethyl-1,3-diamino-2-hydroxypropane (HL)”. Inorg Chim Acta 441:50–56CrossRefGoogle Scholar
  42. 42.
    Deng Y-H, Wang C-C, Hu J-H, Yang W-L, Fu S-K (2005) Organic–inorganic hybrid nanomaterials prepared from 4-formylbenzo-12-crown-4-ether and silica coated magnetite nanoparticles. Colloid Surf A 262:87–93CrossRefGoogle Scholar
  43. 43.
    Jasonov PG, Nougaliev DK, Burov BV, Heller F (1998) A modernized coercivity spectrometer. Geol Carpath 49:224–225Google Scholar
  44. 44.
    Santhosh C, Daneshvar E, Kollu P, Peräniemi S, Grace AN, Bhatnagar A (2017) Magnetic SiO2@CoFe2O4 nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water. Chem Eng J322:472–487CrossRefGoogle Scholar
  45. 45.
    Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 26:98–100Google Scholar
  46. 46.
    Rodríguez-Carvajal J (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis, In: Abstract of the satellite meeting of the XVth congress of the international union of crystallography, Toulouse, France Université Paul Sabatier, Toulouse, 1990Google Scholar
  47. 47.
    Roisnel T, Rodriguez-Carvajal J WinPLOTR, plotr@llb.saclay.cea.fr, http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm
  48. 48.
    Fleet ME (1981) The structure of magnetite. Acta Crystallogr B 37:917–920CrossRefGoogle Scholar
  49. 49.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  50. 50.
    Vadivel M, Babu RR, Arivanandhan M, Ramamurthi K, Hayakawa Y (2015) Role of SDS surfactant concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 nanoparticles. RSC Adv 5:27060–27068CrossRefGoogle Scholar
  51. 51.
    Stewart JE (1957) Infrared absorption spectra of urea, thiourea, and some thiourea-alkali halide complexes. J. Chem. Phys. 26:248–254CrossRefGoogle Scholar
  52. 52.
    Alcaraz L, Isasi J (2017) Synthesis and study of Y0.9Ln0.1VO4 nanophosphors and Y0.9Ln0.1VO4@SiO2 luminescent nanocomposites with Ln=Eu, Dy, Er. Ceram Int 43:5311–5318CrossRefGoogle Scholar
  53. 53.
    Chang Q, Zhu L, Yu C, Tang H (2008) Synthesis and properties of magnetic and luminescent Fe3O4 /SiO2/Dye/SiO2 nanoparticles. J Lumin 128:1890–1895CrossRefGoogle Scholar
  54. 54.
    Donia AM, Atia AA, Al-amrani WA, El-Nahas AM (2009) Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J Hazard Mater 161:1544–1550CrossRefGoogle Scholar
  55. 55.
    Culita DC, Simonescu CM, Patescu RE, Dragne M, Stanica N, Oprea O (2016) o-Vanillin functionalized mesoporous silica–coated magnetite nanoparticles for efficient removal of Pb(II) from water. J Solid State Chem 238:311–320CrossRefGoogle Scholar
  56. 56.
    Cheng Y, Zheng Y, Wang Y, Bao F, Qin Y (2005) Synthesis and magnetic properties of nickel ferrite nano-octahedra. J Solid State Chem 178:2394–2397CrossRefGoogle Scholar
  57. 57.
    Sahoo B, Sanjana K, Devi P, Dutta S, Maiti TK, Pramanik P, Dhara D (2014) Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interf Sci 431:31–41CrossRefGoogle Scholar
  58. 58.
    Bai Y, Cui Y, Paoli GC, Shi C, Wanga D, Zhou M, Zhang L, Shi X (2016) Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR. Colloid Surf B 145:257–266CrossRefGoogle Scholar
  59. 59.
    Ursachi I, Vasile A, Chiriac H, Postolache P, Stancu A (2011) Magnetic properties of magnetite nanoparticles coated with mesoporous silica by sonochemical method. Mater Res Bull 46:2468–2473CrossRefGoogle Scholar
  60. 60.
    Rivas Rojas PC, Tancredi P, Moscoso Londoño O, Knobel M, Socolovsky LM (2018) Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles. J Magn Magn Mater 451:688–696CrossRefGoogle Scholar
  61. 61.
    Mørup S, Brok E, Frandsen C (2013) Spin structures in magnetic nanoparticles. J Nanomater 2013:720629CrossRefGoogle Scholar
  62. 62.
    Sheng W, Wei W, Li J, Qi X, Zuo G, Chen Q, Pan X, Dong W (2016) Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation. Appl Surf Sci 387:1116–1124CrossRefGoogle Scholar
  63. 63.
    Ehi-Eromosele CO, Ita BI, Iweala EEJ (2017) Silica coated LSMO magnetic nanoparticles for the pH-Responsive delivery of 5-Fluorouracil anticancer drug. Colloid Surf A 530:164–171CrossRefGoogle Scholar
  64. 64.
    Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, Xu H, Zhou J (2013) Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J 226:30–38CrossRefGoogle Scholar
  65. 65.
    Zhao Y, Li J, Zhang S, Wang X (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Adv 4:32710CrossRefGoogle Scholar
  66. 66.
    Sing K (2001) Review: the use of nitrogen adsorption for the characterisation of porous materials. Colloid Surf A 187–188:3–9CrossRefGoogle Scholar
  67. 67.
    Hou X, Zhuang L, Ma B, Chen S, He H, Yin F (2018) Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chem Eng Sci 181:315–325CrossRefGoogle Scholar
  68. 68.
    Goscianska J, Olejnik A, Nowak I (2017) APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloid Surf A 533:187–196CrossRefGoogle Scholar
  69. 69.
    Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L (2014) Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Interfaces 6:3421–3426CrossRefGoogle Scholar
  70. 70.
    Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177:676–682CrossRefGoogle Scholar
  71. 71.
    Ren Y, Zhang M, Zhao D (2008) Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper. Desalination 13:135–149CrossRefGoogle Scholar
  72. 72.
    Sezgin N, Sahin M, Yalcin A, Koseoglu Y (2013) Synthesis, characterization and, the heavy metal removal efficiency of MFe2O4 (M=Ni, Cu) nanoparticles. Ekoloji 22:89–96CrossRefGoogle Scholar
  73. 73.
    Gong J-L, Wang X-Y, Zeng G-M, Chen L, Deng J-H, Zhang X-R, Niu Q-Y (2012) Copper(II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem Eng J 185-186:100–107CrossRefGoogle Scholar
  74. 74.
    Ojemaye MO, Okoh OO, Okoh AI (2018) Uptake of Zn2+ and As3+ from wastewater by adsorption onto imine functionalized magnetic nanoparticles. Water 10:36CrossRefGoogle Scholar
  75. 75.
    Chou C-M, Lien H-L (2011) Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J Nanopart Res 13:2099–2107CrossRefGoogle Scholar
  76. 76.
    Matei E, Mihaela Predescu A, Coman G, Bălănescu M, Sohaciu M, Predescu C, Favier L, Niculescu M (2016) Magnetic nanoparticles used in environmental engineering for Pb and Zn removal. Environ Eng Manag J 15:1019–1025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Isasi
    • 1
    Email author
  • P. Arévalo
    • 1
  • E. Martin
    • 1
  • F. Martín-Hernández
    • 2
    • 3
    • 4
  1. 1.Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de MadridCiudad Universitaria s/nMadridSpain
  2. 2.Departamento de FTAA I, Facultad de Ciencias Físicas, Universidad Complutense de MadridCiudad Universitaria s/nMadridSpain
  3. 3.Instituto de Geociencias (UCM, CSIC)MadridSpain
  4. 4.Instituto de Magnetismo Aplicado (UCM)Las Rozas MadridSpain

Personalised recommendations