Solvothermal synthesis and characterization of visible-light-active MoO3/MoS2 heterostructure

  • Deyong WuEmail author
  • Li Han
Brief Communication: Sol-gel and hybrid materials for energy, environment and building applications


MoO3/MoS2 microspheres were successfully synthesized via one-step solvothermal method. The crystal structure, morphology, and composition of MoO3/MoS2 microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). And MoO3/MoS2 microspheres exhibited excellent photocatalytic performance in the degradation of methyl orange under visible light irradiation. The photocatalytic degradation rate of MoO3/MoS2 microsphere is 18.5 and 2.5 times of pure MoO3 and MoS2, respectively. The enhanced photocatalytic activity of MoO3/MoS2 should be attributed to the formation of heterojunctions between MoO3 and MoS2 nanosheets, resulting in the effective separation and utilization of the photo-generated charge carries.


MoO3 MoS2 Microsphere Visible light Photocatalysis 



This work was supported by the National Natural Science Foundation of China (21767009). WDY also gratefully acknowledges the support from China Scholarship Council.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Vasei HV, Masoudpanah SM, Adeli M, Aboutalebi MR (2019) J Sol-Gel Sci Technol 89:594–601CrossRefGoogle Scholar
  2. 2.
    Wu DY, Long MC, Zhou JY, Cai WM, Zhu XH et al. (2009) Surf Coat Tech 203:3728–3733CrossRefGoogle Scholar
  3. 3.
    Duran-Alvarez JC, Santiago AL, Ramirez-Ortega D, Acevedo-Pena P, Castillon F et al. (2018) J Sol-Gel Sci Technol 88:474–487CrossRefGoogle Scholar
  4. 4.
    Bolaghi ZK, Masoudpanah SM, Hasheminiasari M (2018) J Sol-Gel Sci Technol 86:711–718CrossRefGoogle Scholar
  5. 5.
    Vega MPB, Hinojosa-Reyes M, Hernandez-Ramirez A, Mar JLG, Rodriguez-Gonzalez V, Hinojosa-Reyes L (2018) J Sol-Gel Sci Technol 85:723–731CrossRefGoogle Scholar
  6. 6.
    Zheng LH, Yu XJ, Long MC, Li QL (2017) Chin J Catal 38:2076–2084CrossRefGoogle Scholar
  7. 7.
    Rabbani M, Rahimi R, Ghadi HF (2018) J Sol-Gel Sci Technol 87:340–346CrossRefGoogle Scholar
  8. 8.
    Yogananda HS, Nagabhushana H, Darshan GP, Basavaraj RB, Prasad BD et al. (2018) J Alloys Compd 745:874–891CrossRefGoogle Scholar
  9. 9.
    Rathnasamy R, Thangamuthu R, Alagan V (2018) Res Chem Intermed 44:1647–1660CrossRefGoogle Scholar
  10. 10.
    Zhang XN, Yi JJ, Chen HX, Mao M, Liu L et al. (2019) J Energy Chem 29:65–71CrossRefGoogle Scholar
  11. 11.
    Hu ZS, Zhou JB, Zhang Y, Liu W, Zhou J, Cai WQ (2018) Chem Phys Lett 706:208–214CrossRefGoogle Scholar
  12. 12.
    Sadhanala HK, Senapati S, Harika KV, Nanda KK, Gedanken A (2018) New J Chem 42:14318–14324CrossRefGoogle Scholar
  13. 13.
    Huang SY, Chen CC, Tsai HY, Shaya J, Lu CS (2018) Sep Purif Technol. 197:147–155CrossRefGoogle Scholar
  14. 14.
    Liu YM, Cao YF, Lv H, Li S, Zhang H (2017) Mater Lett 188:99–102CrossRefGoogle Scholar
  15. 15.
    Zhu TT, Huang LY, Song YH, Chen ZG, Ji HY et al. (2016) New J Chem 40:2168–2177CrossRefGoogle Scholar
  16. 16.
    Xue XY, Zhang JA, Saana IA, Sun J, Xu Q, Mu SC (2018) Nanoscale 10:16531–16538CrossRefGoogle Scholar
  17. 17.
    Ye F, Li HF, Yu HT, Chen S, Quan X (2017) Appl Surf Sci 426:177–184CrossRefGoogle Scholar
  18. 18.
    Teng W, Tan XJ, Li XY, Tang YB (2017) Appl Surf Sci 409:250–260CrossRefGoogle Scholar
  19. 19.
    Wu DY, Wu CY, Tan HY (2018) J Mater Sci Mater El 29:11090–11095CrossRefGoogle Scholar
  20. 20.
    Liu C, Chai B, Wang CL, Yan JT, Ren ZD (2018) Int J Hydrogen Energy 43:6977–6986CrossRefGoogle Scholar
  21. 21.
    Wang JZ, Dong SY, Yu CF, Han X, Guo JY, Sun JH (2017) Catal Commun 92:100–104CrossRefGoogle Scholar
  22. 22.
    Midya A, Ghorai A, Mukherjee S, Maiti R, Ray SK (2016) J Mater Chem A 4:4534–4543CrossRefGoogle Scholar
  23. 23.
    Alam U, Kumar S, Bahnemann D, Koch J, Tegenkamp C, Muneer M (2018) PCCP 20:4538–4545CrossRefGoogle Scholar
  24. 24.
    Wang J, Wang XX, Zhao GX, Song G, Chen DY et al. (2018) Chem Eng J 334:569–578CrossRefGoogle Scholar
  25. 25.
    Wang FZ, Li WJ, Gu SN, Li HD, Wu X et al. (2017) J Photoch Photobio a-Chem 335:140–148CrossRefGoogle Scholar
  26. 26.
    Li W, Chen JF, Guo RT, Wu JM, Zhou XS, Luo J (2017) J Mater Sci Mater El 28:15967–15979CrossRefGoogle Scholar
  27. 27.
    Zhang ZF, Qian QK, Li BK, Chen KJ (2018) ACS Appl Mat Interfaces 10:17419–17426CrossRefGoogle Scholar
  28. 28.
    Lin L, Huang SY, Zhu YX, Du B, Zhang ZH et al. (2019) Dalton Trans 48:2715–2721CrossRefGoogle Scholar
  29. 29.
    Wang ZJ, Jin ZL, Wang GR, Ma BZ (2018) Int J Hydrogen Energy 43:13039–13050CrossRefGoogle Scholar
  30. 30.
    Chenari HM, Zamiri R, Tobaldi DM, Shabani M, Rebelo A et al. (2017) J Sol-Gel Sci Technol 84:274–282CrossRefGoogle Scholar
  31. 31.
    Wu DY, Long MC (2011) ACS Appl Mat Interfaces 3:4770–4774CrossRefGoogle Scholar
  32. 32.
    Moongraksathum B, Chen YW (2017) J Sol-Gel Sci Technol 82:772–782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringHubei Minzu UniversityEnshi CityChina

Personalised recommendations