An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications

  • Aslam Hossain
  • A. K. M. Atique UllahEmail author
  • Partha Sarathi GuinEmail author
  • Sanjay RoyEmail author
Review Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


Multifunctional materials having simultaneous electrical and magnetic assembling have been attempted by numerous researchers for next-generation electronic appliances. Among such materials, rare earth metals containing double perovskites, such as La2BB′O6 (B = Ni, B′ = Mn) are the utmost studied materials. In this review, we have summarized various physicochemical aspects of La2NiMnO6 such as crystal structure, electrical, magnetic, and magneto-transport behavior from earlier studies under several experimental conditions. Magnetic field and temperature effects on magnetoelectric and electronic behavior of this material are described. We discuss how the morphology in the form of bulk phase, thin layer, and nanoparticles affect such physicochemical properties of this material. We also highlighted the role of cation order–disorder at ‘B’ sites and the probability of the resulting numerous electronic behavior in this type of material and expectation on basic understanding of Ni–O–Mn electronic, as well as magnetic properties. The prospective applications of this material over conventional substances in solar cells, electric tunable devices, biomolecular and gas sensing technologies are also ascribed. The motivation of the present review is to sum up all such behaviors of La2NiMnO6 to find its possible applications in new areas of material research and the directions of future works.


  • La2NiMnO6 double perovskite exhibits simultaneous electric and magnetic orderings

  • Crystal structure, magneto-electric, and transport nature affect the functionality of La2NiMnO6

  • Bulk phase, thin layer, and nanoparticles morphology affect the physical property of La2NiMnO6

  • La2NiMnO6 holds solar cell, electric tunable device, biomolecular and gas sensing applications


Multifunctional materials Double perovskites Crystal structure Magnetic properties Electronic properties 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Nature 55:426Google Scholar
  2. 2.
    Hill NA (2000) J Phys Chem B 104:6694CrossRefGoogle Scholar
  3. 3.
    Kimura T, Sekio Y, Nakamura H, Seigrist T, Ramirez AP (2008) Nat Mater 7:291CrossRefGoogle Scholar
  4. 4.
    Subramanian MA, He T, Chen J, Rogado N S, Calvarese T G, Sleight A W (2006) Adv Mater 18:1737CrossRefGoogle Scholar
  5. 5.
    Yang C-H, Lee S-H, Koo TY, Jeong YH (2007) Phys Rev B 75:140104. (R)CrossRefGoogle Scholar
  6. 6.
    Ramesh R, Spaldin NA (2007) Nat Mater 6:21CrossRefGoogle Scholar
  7. 7.
    Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) Prog Solid State Chem 22:197CrossRefGoogle Scholar
  8. 8.
    Goodenough JB (1955) Phys Rev 100:564CrossRefGoogle Scholar
  9. 9.
    Kanamori J (1959) J Phys Chem Solids 10:87CrossRefGoogle Scholar
  10. 10.
    Rogado NS, Li J, Sleight AW, Subramanian MA (2005) Adv Mater 17:2225CrossRefGoogle Scholar
  11. 11.
    Dass RI, Yan J-Q, Goodenough JB (2003) Phys Rev B 68:064415CrossRefGoogle Scholar
  12. 12.
    Yue-Lei Z, Yi-Sheng C, Li-Qing P, Young S (2013) Chin Phys B 22:087601CrossRefGoogle Scholar
  13. 13.
    Iliev MN, Gospodinov MM, Singh MP, Meen J, Truong KD, Fournier P, Jandi S (2009) J Appl Phys 106:023515CrossRefGoogle Scholar
  14. 14.
    Davies PK, Wu H, Borisevich AY, Molodetsky IE, Farber L (2008) Ann Rev Mater Res 38:369CrossRefGoogle Scholar
  15. 15.
    Goodenough JB, Dass RI (2000) Int J Inorg Mater 2:3CrossRefGoogle Scholar
  16. 16.
    Wold A, Arnott RJ, Goodenough JB (1958) J Appl Phys 29:387CrossRefGoogle Scholar
  17. 17.
    Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare UV, Knut R, Karis O, Nordblad P, Sarma DD (2012) Phys Rev Lett 108:127201CrossRefGoogle Scholar
  18. 18.
    Bull CL, Gleeson D, Knight KS (2003) J Phys Condens Matter 15:4927CrossRefGoogle Scholar
  19. 19.
    Sayed FN, Achary SN, Jayakumar OD (2011) J Mater Res 26:567CrossRefGoogle Scholar
  20. 20.
    Ullah M, Khan SA, Murtaza G, Khenata R, Ullah N, Omran SB (2015) J Magn Magn Mater 377:197CrossRefGoogle Scholar
  21. 21.
    Wu Z, Cohen RE (2006) Phys Rev B 73:235116CrossRefGoogle Scholar
  22. 22.
    Blascoa J, S nche MC, re -Cacho, Garc a, Sub as G, Campo J (2002) J Phys Chem Solids 63:781CrossRefGoogle Scholar
  23. 23.
    Goodenough JB, Wold A, Arnott RJ, Menyuk N (1961) Phys Rev 124:373CrossRefGoogle Scholar
  24. 24.
    Blasse G (1965) J Phys Chem Solids 26:1969CrossRefGoogle Scholar
  25. 25.
    Blasco J, Garacia J, Sanchez MC, Campo J, Subias G, Perz-Cacho J (2002) Eur Phys J B 30:469CrossRefGoogle Scholar
  26. 26.
    Ritter C, Ibarra MR, De Teresa JM, Algarabel PA, Marquina C, Blasco J, García J, Oseroff S, Cheong S-W (1997) Phys Rev B 56:8902CrossRefGoogle Scholar
  27. 27.
    Sánchez RD, Causa MT, Sereni J, Vallet-Regí M, Sayagués MJ, González-Calbet JM (1993) J Alloys Compounds 191:287CrossRefGoogle Scholar
  28. 28.
    Asai K, Sekizawa H, Iida S (1979) J Phys Soc Japan 47:1054CrossRefGoogle Scholar
  29. 29.
    Matar SF, Subramanian MA, Villesuzanne A, Eyert V, Whangbo M-H (2007) J Magn Magn Mater 308:116CrossRefGoogle Scholar
  30. 30.
    Zhu M, Lin Y, Lo EWC, Wang Q, Zhao Z, Xie W (2012) Appl Phys Lett 100:062406CrossRefGoogle Scholar
  31. 31.
    Truong KD, Singh MP, Jandl S, Fournier P (2009) Phys Rev B 80:134424CrossRefGoogle Scholar
  32. 32.
    Kang JS, Wi SC, Lee SS, Kim G, Yang HM, Lee BW, Han SW, Kim KH, Sekiyama A, Kasai S, Suga S, Shim JH, Min BI (2004) J Phys Condens Matter 16:S5685CrossRefGoogle Scholar
  33. 33.
    Booth RJ, Fillman R, Whitaker H, Nag Abanti, Tiwari RM, Ramanujachary KV, Gopalakrishnan J, Lofland SE (2009) Mater Res Bull 44:1559CrossRefGoogle Scholar
  34. 34.
    Singh MP, Grygiel C, Sheets WC, Boullay Ph, Hervieu M, Prellier W, Mercey B, Simon Ch, Raveau B (2007) Appl Phys Lett 91:012503CrossRefGoogle Scholar
  35. 35.
    Joly VLJ, Joy PA, Date SK, Gopinath CS (2002) Phys Rev B 65:184416CrossRefGoogle Scholar
  36. 36.
    Chandrasekhar KD, Das AK, Venimadhav A (2012) J Phys Condens Matter 24:376003CrossRefGoogle Scholar
  37. 37.
    Iliev MN, Guo H, Gupta A (2007) Appl Phys Lett 90:151914CrossRefGoogle Scholar
  38. 38.
    Zhou S, Shi L, Yang H, Zhao J (2007) Appl Phys Lett 91:172505CrossRefGoogle Scholar
  39. 39.
    Nair HS, Swain DA, Hariharan N, Adiga S, Narayana C, Elzabeth S (2011) J Appl Phys 110:123919CrossRefGoogle Scholar
  40. 40.
    von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Phys Rev Lett 71:331Google Scholar
  41. 41.
    Hwang HY, Cheong S-W, Ong NP, Batlogg B (1996) Phys Rev Lett 77:2041CrossRefGoogle Scholar
  42. 42.
    Kobayashi K-I, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Nature 395:677CrossRefGoogle Scholar
  43. 43.
    Sarma DD, Ray Sugata, Tanaka K, Kobayashi M, Fujimori A, Sanyal P, Krishnamurthy HR, Dasgupta C (2007) Phys Rev Lett 98:157205CrossRefGoogle Scholar
  44. 44.
    Du CH, Adur R, Wang HL, Hauser AdamJ, Yang FY, Hammel PChris (2013) Phys Rev Lett 110:147204CrossRefGoogle Scholar
  45. 45.
    Hashisaka M, Kan D, Masuno A, Takano M, Shimakawa Y, Terashima T, Mibu K (2006) Appl Phys Lett 89:032504CrossRefGoogle Scholar
  46. 46.
    Wang XJ, Sui Y, Li Y, Li L, Zhang XQ, Wang Y, Liu ZG, Su WH, Tang JK (2009) Appl Phys Lett 95:252502CrossRefGoogle Scholar
  47. 47.
    Zhou SM, Guo YQ, Zhao JY, Zhao SY, Shi L (2010) Appl Phys Lett 96:262507CrossRefGoogle Scholar
  48. 48.
    Garc a-Hernande M, Mart ne L, Mart ne -Lope M, Casais MT, Alonso JA (2001) Phys Rev Lett 86:2443CrossRefGoogle Scholar
  49. 49.
    Singh VN, Majumdar P (2011) EPL 94:47004CrossRefGoogle Scholar
  50. 50.
    Guo Y, Shi L, Zhou S, Zhao J, Liu W (2013) Appl Phys Lett 102:222401CrossRefGoogle Scholar
  51. 51.
    Mostovoy M, Scaramucci A, Spaldin NA, Delaney KT (2010) Phys Rev Lett 105:087202CrossRefGoogle Scholar
  52. 52.
    Kitagawa Y et al. (2010) Nat Mater 9:797CrossRefGoogle Scholar
  53. 53.
    Fiebig M (2005) J Phys D 38:R123CrossRefGoogle Scholar
  54. 54.
    Shvartsman VV et al. (2008) Phys Rev Lett 101:165704CrossRefGoogle Scholar
  55. 55.
    Choudhury D et al. (2011) Phys Rev B 84:125124CrossRefGoogle Scholar
  56. 56.
    Singh MP, Grygiel C, Sheets WC, Boullay Ph, Hervieu M, Prellier W, Mercey B, Simon C, Raveau B (2007) Appl Phys Lett 91:012503CrossRefGoogle Scholar
  57. 57.
    Boullay P, Grygiel C, Rautama EL, Singh MP, Kundu AK (2007) Mater Sci Eng B 144:49CrossRefGoogle Scholar
  58. 58.
    Guo H, Burgess J, Street S, Gupta A, Calvarese TG, Subramanian MA (2006) Appl Phys Lett 89:022509CrossRefGoogle Scholar
  59. 59.
    Guo HZ, Burgess J, Ada E, Street S, Gupta A, Iliev MN, Kellock AJ, Magen C, Varela M, Pennycook SJ (2008) Phys Rev B 77:174423CrossRefGoogle Scholar
  60. 60.
    Kitamura M, Ohkubo I, Kubota M, Matsumoto Y, Koinuma H, Oshima M (2009) Appl Phys Lett 94:132506CrossRefGoogle Scholar
  61. 61.
    Singh MP, Simon C, Raveau B, Prellier W (2006) Appl Phys Lett 89:022509CrossRefGoogle Scholar
  62. 62.
    Singh MP, Truong KD, Fournier P (2007) Appl Phys Lett 91:042504CrossRefGoogle Scholar
  63. 63.
    Padhan P, Guo HZ, LeClair P, Gupta A (2008) Appl Phys Lett 92:022909CrossRefGoogle Scholar
  64. 64.
    Singh MP, Truong KD, Jandl S, Fournier P (2009) Phys Rev B 79:224421CrossRefGoogle Scholar
  65. 65.
    Mitchell RG (2004) Perovskites. Modern and Ancient Almaz Press, Canada Chap. 1Google Scholar
  66. 66.
    Wu S-Q, Cheng S, Lu L, Liu M, Jin X-W, Cheng S-D, Mi S-B (2018) Sci Rep 8:2516Google Scholar
  67. 67.
    Zhao S, Shi L, Zhou S, Zhao J, Yang H, Y. (2009) J Appl Phys 106:123901CrossRefGoogle Scholar
  68. 68.
    Hossain A, Bandyopadhyay P, Guin PS, Roy S (2017) Appl Mat Today 9:300CrossRefGoogle Scholar
  69. 69.
    Hossain A, Ghosh D, Dutta U, Walke PS, Mordvinova NE, Lebedev OI, Sinha B, Pal K, Gayen A, Kundu AK, Seikh M (2017) J Magnetis Mag Mat 444:68CrossRefGoogle Scholar
  70. 70.
    Singh DJ, Park CH (2008) Phys Rev Lett 100:087601CrossRefGoogle Scholar
  71. 71.
    Masud MG, Ghosh A, Sannigrahi J, Chaudhuri BK (2012) J Phys Condens Matter 24:295902CrossRefGoogle Scholar
  72. 72.
    Chandrsekhara KD, Das AK, Venimadhav A (2012) AIP Conf Proc 1447:1237CrossRefGoogle Scholar
  73. 73.
    Chakraborty D, Nandi UN, Jana D, Masud MdG, Giri S (2015) J Appl Phys 118:035103CrossRefGoogle Scholar
  74. 74.
    Zhao S, Shi Lei, Zhou S, Zhao J, Yang H, Guo Y (2009) J Appl Phys 106:123901CrossRefGoogle Scholar
  75. 75.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Amer Chem Soc 131:6050CrossRefGoogle Scholar
  76. 76.
    Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) Science 348:1234CrossRefGoogle Scholar
  77. 77.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Science 347:967CrossRefGoogle Scholar
  78. 78.
    Kazim S, Na eeruddin MK, Gr€at el M, Ahmad S (2014) Angew Chem Int Ed 53:2812CrossRefGoogle Scholar
  79. 79.
    Gao P, Gr€at el M, Nazeeruddin MK (2014) Energy Environ Sci 7:2448CrossRefGoogle Scholar
  80. 80.
    Zhang Z, Jian H, Tang X, Yang J, Zhu X, Sun Y (2012) Dalton Trans 41:11836CrossRefGoogle Scholar
  81. 81.
    Lan C, Zhao S, Xu T, Ma J, Hayase S, Ma T (2016) J Alloys Compd 655:208CrossRefGoogle Scholar
  82. 82.
    Bern F, Ziese M, Setzer A, Pippel E, Hesse D, Vrejoiu I, Physics J (2013) Cond Matter 25:496003CrossRefGoogle Scholar
  83. 83.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759CrossRefGoogle Scholar
  84. 84.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Bios Bioeng 100:1CrossRefGoogle Scholar
  85. 85.
    Atique Ullah AKM, Kabir MF, Akter M, Tamanna AN, Hossain A, Tareq ARM, Khan MNI, Fazle Kibria AKM, Kurasaki Masaaki, Rahman MM (2018) RSC Adv 8:37176–37183CrossRefGoogle Scholar
  86. 86.
    Tang DP, Yuan R, Chai YQ (2006) J Phys Chem B 110:11640CrossRefGoogle Scholar
  87. 87.
    Banerjee R, Katsenovich Y, Lagos L (2010) Curr Med Chem 2010:3120CrossRefGoogle Scholar
  88. 88.
    Kim WS, Anoop G, Lee HJ, Su Lee S, Kwak JH, Lee H, Jo JY (2016) J Cat 344:578CrossRefGoogle Scholar
  89. 89.
    Haider MA, Capizzi AJ, Murayama M (2011) Steven McIntosh Solid State Ionics 196:65CrossRefGoogle Scholar
  90. 90.
    Tang IM, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-O W (2011) Nanoscale Res Lett 6:19CrossRefGoogle Scholar
  91. 91.
    Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237CrossRefGoogle Scholar
  92. 92.
    Fan HM, Yi JB, Yang Y (2009) ACS Nano 3:2798CrossRefGoogle Scholar
  93. 93.
    Kim HJ, Ahn JE, Haam S (2006) J Mater Chem 16:1617CrossRefGoogle Scholar
  94. 94.
    Ruan J, Ji JJ, Song H, Qian QR, Wang K, Wang C, Cui DX (2012) Nanoscale Res Lett 7:309CrossRefGoogle Scholar
  95. 95.
    Kopac T, Bozgeyik K, Yener J (2008) Colloids Surfactants A 322:19CrossRefGoogle Scholar
  96. 96.
    Rezwan K, Meier LP, Gauckler LJ (2005) Biomaterials 26:4351CrossRefGoogle Scholar
  97. 97.
    Rezwan K, Studart AR, Voros J (2005) J Phys Chem B 109:14469CrossRefGoogle Scholar
  98. 98.
    Seitz R, Brings R, Geiger R (2005) Appl Surf Sci 252:154CrossRefGoogle Scholar
  99. 99.
    Hollmann O, Czeslik C (2006) Langmuir 22:3300CrossRefGoogle Scholar
  100. 100.
    Wu Z-Y, Ma C-B, Tang X-G, Li R, Liu Q-X, Chen B-T (2013) Nanoscale Res Lett 8:207CrossRefGoogle Scholar
  101. 101.
    Kleemann W, Dec J, Wang R, Itoh M (2003) Phys RevB 67:092107CrossRefGoogle Scholar
  102. 102.
    Liang X, Wu W, Meng Z (2003) Mater Sci Eng B 99:366CrossRefGoogle Scholar
  103. 103.
    Maiti T, Guo R, Bhalla AS (2007) Appl Phys Lett 90:182901CrossRefGoogle Scholar
  104. 104.
    Tang MH, Hou JW, Zhang J, Dong GJ, Shu W (2010) Solid State Comm. 50:1453CrossRefGoogle Scholar
  105. 105.
    Li C, Liu B, He Y, Lv C, He H, Xu Y (2014) J Alloys Compd 590:541CrossRefGoogle Scholar
  106. 106.
    Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5CrossRefGoogle Scholar
  107. 107.
    Kim B, Choi HC, Kim BH, Min BI (2010) Phys Rev B 81:224402CrossRefGoogle Scholar
  108. 108.
    Yang WZ, Liu XQ, Lin YQ, Chen XM (2011) J Appl Phys 111:084106CrossRefGoogle Scholar
  109. 109.
    Cao Z, Li Z, Gao Y, Liu J, Ruan X, Fang M (2014) Phys Status Solidi 211:1207CrossRefGoogle Scholar
  110. 110.
    Gavin L (2012) Physics 5:35CrossRefGoogle Scholar
  111. 111.
    Lin YQ, Chen XM, Liu XQ (2009) Solid State Commun 149:784CrossRefGoogle Scholar
  112. 112.
    Chandrasekhar KD, DAS AK, Mitra C, Venimadhav A (2012) J Phys 24:495901Google Scholar
  113. 113.
    Hippel ARVon (1966) Dielectrics and Waves. MIT Press, CambridgeGoogle Scholar
  114. 114.
    Wang CC, He M, Yang F, Wen J, Liu GZ, Lu HB (2007) Appl Phys Lett 90:192904CrossRefGoogle Scholar
  115. 115.
    Yu J, Ishikawa T, Arai Y, Yoda S, Itoh M, Saita Y (2005) Appl Phys Lett 87:252904CrossRefGoogle Scholar
  116. 116.
    Agrawal S, Manuspiya H, Guo R, Agrawal D, Bhalla AS (2004) Ceram Trans 150:299Google Scholar
  117. 117.
    Chen H, Cao Z, Wang L, He W, Sun J, Zhang Y, Ruan X (2014) J Alloys Compd 616:213CrossRefGoogle Scholar
  118. 118.
    Biswal AK, Ray J, Kuila S, Vishwakarma PN (2015) Vol. 1665, AIP Conference Proceedings, p 140050, AIP Publishing LLC, NY USAGoogle Scholar
  119. 119.
    Labidi A, Jacolin C, Bendahan M, Abdelghani A, Guerin J, Aguir K, Maaref M (2005) Sensor Sensor Actuat B-Chem 106:713CrossRefGoogle Scholar
  120. 120.
    Orlandi F, Righi L, Ritter C, Pernechele C, Solzi M, Cabassi R, Bolzoni F, Calestani G (2014) J Mat Chem C 2:9215CrossRefGoogle Scholar
  121. 121.
    Hossaina A, Bandyopadhyay P, Roy S (2018) J Alloys Comd 740:414CrossRefGoogle Scholar
  122. 122.
    Atique Ullah AKM, Kibria AKMF, Akter M, Khan MNI, Maksud MA, Jahan RA, Firoz SH (2017) J Saudi Chem Soc. 21:822CrossRefGoogle Scholar
  123. 123.
    Gilev AR, Hossain A, Kiselev EA, Cherepanov VA (2018) Solid State Ionics 323:64–71CrossRefGoogle Scholar
  124. 124.
    Karimunnesa S, Ullah AKMA, Hasan MR, Shanta FS, Islam R, Khan MNI (2018) Effect of holmium substitution on the structural, magnetic and transport properties of CoFe2-xHoxO4 ferrites. J Magn Magn Mater 457:57CrossRefGoogle Scholar
  125. 125.
    Dutta Uma, Hossain Aslam, Walke PravinS, Ghosh Debamalya, Mordvinova NataliaE, Lebedev OlegI, Haque Ariful, Pal Kamalesh, Gayen Arup, Kundu AsishK, Seikh MdMotin (2019) J Alloys Compd 777:1396CrossRefGoogle Scholar
  126. 126.
    Hossain Aslam, Roy Sanjay, Sakthipandi K (2019) Ceram Int 45:4152CrossRefGoogle Scholar
  127. 127.
    Atique Ullah AKM, Hossain A, Akter M, Kabir MF, Khan MNI, Kibria AKMFazle, Firoz ShakhawatH (2019) Mater Lett 238:151CrossRefGoogle Scholar
  128. 128.
    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F (2015) Nat Photonics 9:61CrossRefGoogle Scholar
  129. 129.
    Masud MG, Ghosh A, Sannigrahi J, Chaudhuri BK (2012) J Phys Condens Matter 24:295902CrossRefGoogle Scholar
  130. 130.
    Kumar P, Ghara S, Rajeswara B, Muthu DVS, Sundaresan A, Sood AK (2014) Solid State Commun 184:47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical and Inorganic Chemistry, Institute of Natural Science and MathematicsUral Federal UniversityYekaterinburgRussia
  2. 2.Nanoscience and Technology Research LaboratoryAtomic Energy Centre, Bangladesh Atomic Energy CommissionDhaka 1000Bangladesh
  3. 3.Department of ChemistryShibpur Dinobundhoo Institution (College)HowrahIndia

Personalised recommendations