Advertisement

Synthesis and characterization of porous clay-organic heterostructures

  • Apostolos EnotiadisEmail author
  • Maria Tsokaridou
  • Nikolaos Chalmpes
  • Viktoria Sakavitsi
  • Konstantinos Spyrou
  • Dimitrios GournisEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Abstract

This work describes the synthesis and characterization of porous clay-organic heterostructures. The silylation of organically modified clay minerals by a phenyl-bridged silica precursor can create a silica network between the clay layers while simultaneously an exfoliated heterostructure is achieved. Subsequent thermal treatment up to 350 °C removes the aliphatic moieties of the heterostructure and subsequently high surface area is obtained, while a high amount of phenylene groups are still remained trapped in the silica network. This intriguing phenyl/heterostructure possesses a hydrophobic character and accessible surface areas alongside the presence of the phenylene groups embedded in the silica network making this novel material very attractive for potential use in diverse functional applications in catalysis, absorption and as filler in polymer nanocomposites.

Highlights

  • A novel phenylene-bridged silica network is developed in the interior of Mt.

  • Exfoliated nanostructures are easily obtained with high specific surface areas.

  • Phenylene groups are still remained trapped in the porous organic heterostructures.

Keywords

Porous materials Clay layers Hybrid structures Heterostructures Alkoxides Phenylene groups 

Notes

Acknowledgements

Nikolaos Chalmpes gratefully acknowledges the IKY Foundation for the financial support: «This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ)».

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. AE would like to thank Dr. Theodore Steriotis and Dr. G. Charalambopoulou for their constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529–531.  https://doi.org/10.1038/374529a0 CrossRefGoogle Scholar
  2. 2.
    Sanchez C, Shea KJ, Kitagawa S (2011) Hybrid materials themed issue. Chem Soc Rev 40:801–828.  https://doi.org/10.1039/c0cs00052c CrossRefGoogle Scholar
  3. 3.
    Stathi P, Papadas IT, Enotiadis A, Gengler RYN, Gournis D, Rudolf P, Deligiannakis Y (2009) Effects of acetate on cation exchange capacity of a Zn-containing montmorillonite: physicochemical significance and metal uptake. Langmuir 25:6825–6833.  https://doi.org/10.1021/la900831q CrossRefGoogle Scholar
  4. 4.
    Nicotera I, Enotiadis A, Angjeli K, Coppola L, Ranieri GA, Gournis D (2011) Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs. J Phys Chem B 115:9087–9097.  https://doi.org/10.1021/jp202954g CrossRefGoogle Scholar
  5. 5.
    Balomenou G, Stathi P, Enotiadis A, Gournis D, Deligiannakis Y (2008) Physicochemical study of amino-functionalized organosilicon cubes intercalated in montmorillonite clay: H-binding and metal uptake. J Colloid Interface Sci 325:74–83.  https://doi.org/10.1016/j.jcis.2008.04.072 CrossRefGoogle Scholar
  6. 6.
    Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. J Colloid Interface Sci 316:298–309.  https://doi.org/10.1016/j.jcis.2007.07.078 CrossRefGoogle Scholar
  7. 7.
    Tzialla AA, Kalogeris E, Enotiadis A, Taha AA, Gournis D, Stamatis H (2009) Effective immobilization of Candida antarctica lipase B in organic-modified clays: application for the epoxidation of terpenes. Mater Sci Eng B 165:173–177.  https://doi.org/10.1016/j.mseb.2009.09.003 CrossRefGoogle Scholar
  8. 8.
    Gengler RYN, Toma LM, Pardo E, Lloret F, Ke X, Van Tendeloo G, Gournis D, Rudolf P (2012) Prussian blue analogues of reduced dimensionality. Small 8:2532–2540.  https://doi.org/10.1002/smll.201200517 CrossRefGoogle Scholar
  9. 9.
    Santos C, Andrade M, Vieira AL, Martins A, Pires J, Freire C, Carvalho AP (2010) Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon N Y 48:4049–4056.  https://doi.org/10.1016/j.carbon.2010.07.010 CrossRefGoogle Scholar
  10. 10.
    Bakandritsos A, Steriotis T, Petridis D (2004) High surface area montmorillonite—carbon composites and derived carbons. Chem Mater. 143:1551–1559CrossRefGoogle Scholar
  11. 11.
    Maccallini E, Benne D, Rudolf P, Georgakilas V, Prato M, Fanti M, Zerbetto F, Sarova GH, Guldi DM, De VN, Bruxelles D, Namur B, Farmaceutiche S, Uni V, Europa P, Athens G, Ciamician CG (2006) Clay—fulleropyrrolidine nanocomposites. J Am Chem Soc 128:6154–6163CrossRefGoogle Scholar
  12. 12.
    Ruiz-Hitzky E, Aranda P (2014) Novel architectures in porous materials based on clays. J Sol–Gel Sci Technol 70:307–316.  https://doi.org/10.1007/s10971-013-3237-9 CrossRefGoogle Scholar
  13. 13.
    Chang W-Y, Chuang C-N, Chen S-H, Wang C-K, Hsieh K-H (2015) Preparation and characterization of nano-hybrids combining poly(urea-imide) with a porous silica-pillared layered phase. J Polym Res 22:205.  https://doi.org/10.1007/s10965-015-0839-7 CrossRefGoogle Scholar
  14. 14.
    Zapata PA, Belver C, Quijada R, Aranda P, Ruiz-Hitzky E (2013) Silica/clay organo-heterostructures to promote polyethylene-clay nanocomposites by in situ polymerization. Appl Catal A 453:142–150.  https://doi.org/10.1016/j.apcata.2012.12.012 CrossRefGoogle Scholar
  15. 15.
    Jime J, Cecilia JA (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chem Rec Rec 18:1085–1104.  https://doi.org/10.1002/tcr.201700107 CrossRefGoogle Scholar
  16. 16.
    Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 20:9306.  https://doi.org/10.1039/c0jm00432d CrossRefGoogle Scholar
  17. 17.
    Perdigón AC, Li D, Pesquera C, González F, Ortiz B, Aguado F, Blanco C (2013) Synthesis of porous clay heterostructures from high charge mica-type aluminosilicates. J Mater Chem A 1:1213.  https://doi.org/10.1039/c2ta00543c CrossRefGoogle Scholar
  18. 18.
    Letaief S, Angeles Martn-Luengo M, Aranda P, Ruiz-Hitzky E (2006) A colloidal route for delamination of layered solids: novel porous-clay nanocomposites. Adv Funct Mater 16:401–409.  https://doi.org/10.1002/adfm.200500190 CrossRefGoogle Scholar
  19. 19.
    Saini VK, Pinto ML, Pires J (2011) Characterization of hierarchical porosity in novel composite monoliths with adsorption studies. Colloids Surf A 373:158–166.  https://doi.org/10.1016/j.colsurfa.2010.10.047 CrossRefGoogle Scholar
  20. 20.
    Kooli F (2014) Porous clay heterostructures (PCHs) from Al13-intercalated and Al13-pillared montmorillonites: properties and heptane hydro-isomerization catalytic activity. Microporous Mesoporous Mater 184:184–192.  https://doi.org/10.1016/j.micromeso.2013.10.018 CrossRefGoogle Scholar
  21. 21.
    Meng X, Qian Z, Wang H, Gao X, Zhang S, Yang M (2008) Sol-gel immobilization of SiO2/TiO2 on hydrophobic clay and its removal of methyl orange from water. J Sol–Gel Sci Technol 46:195–200.  https://doi.org/10.1007/s10971-008-1677-4 CrossRefGoogle Scholar
  22. 22.
    Qu F, Zhu L, Yang K (2009) Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). J Hazard Mater 170:7–12.  https://doi.org/10.1016/j.jhazmat.2009.05.027 CrossRefGoogle Scholar
  23. 23.
    JE Aguiar, JA Cecilia, PAS Tavares, DCS Azevedo, ER Castellón, SMP Lucena, IJS Junior (2016) Adsorption study of reactive dyes onto porous clay heterostructures. Appl Clay Sci  https://doi.org/10.1016/j.clay.2016.09.001
  24. 24.
    Ferreira P, Nunes CD, Carvalho AP, Jose M (2008) Synthesis and characterisation of organo-silica hydrophobic clay heterostructures for volatile organic compounds removal. Microporous Mesoporous Mater 111:612–619.  https://doi.org/10.1016/j.micromeso.2007.09.008 CrossRefGoogle Scholar
  25. 25.
    Wang Y, Zhang P, Wen K, Su X, Zhu J (2016) A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Microporous Mesoporous Mater. 224:285–293.  https://doi.org/10.1016/j.micromeso.2015.12.053 CrossRefGoogle Scholar
  26. 26.
    Nicotera I, Enotiadis A, Angjeli K, Coppola L, Gournis D (2012) Evaluation of smectite clays as nanofillers for the synthesis of nanocomposite polymer electrolytes for fuel cell applications. Int J Hydrog Energy 37:6336–6345.  https://doi.org/10.1016/j.ijhydene.2011.06.041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Apostolos Enotiadis
    • 1
    • 2
    Email author
  • Maria Tsokaridou
    • 1
  • Nikolaos Chalmpes
    • 1
  • Viktoria Sakavitsi
    • 1
  • Konstantinos Spyrou
    • 1
    • 2
  • Dimitrios Gournis
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations