Advertisement

Sol–gel synthesis and investigation of catalysts on the basis of perovskite-type oxides GdMO3 (M = Fe, Co)

  • L. V. Yafarova
  • I. V. Chislova
  • I. A. ZverevaEmail author
  • T. A. Kryuchkova
  • V. V. Kost
  • T. F. Sheshko
Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 16 Downloads

Abstract

The perovskite-type oxides GdCoxFe1−xO3 (x = 0; 0.2; 0.5; 0.8; 1) synthesized by the sol–gel method were tested as catalysts in the dry reforming of methane to syngas between 500 and 950 °С at atmospheric pressure. Thermal analysis (TG and DSC coupled with MS) and phase analysis (X-ray diffraction) were used for the synthesis parameters control. The morphology and surface area were determined by BET and SEM methods. The highly crystalline, homogeneous and pure solids with well-defined structures were prepared. The mixed GdCoxFe1−xO3 (x = 0; 0.2; 0.5; 0.8; 1) structure belongs to an orthorhombic crystal system with a space group of Pnma (62). The partial substitution of Fe by Co leads to the increase of the catalytic activity. in the row: GdFeO3 < GdFe0.5Co0.5O3 < GdCoO3 ⩽ GdFe0.8Co0.2O3 ≈ GdFe0.2Co0.8O3. An additional point is that the presence of Co in B-site suppresses secondary reactions such as reverse water gas-shift without slowing the dry reforming reaction, which produces syngas in a ratio close to 1.

Highlights

  • Nanosized GdCoxFe1−xO3 (x = 0; 0.2; 0.5; 0.8; 1) perovskite-type oxides have been synthesized via the sol–gel method.

  • According to XRD patterns the single phase products with orthorhombic structure were obtained.

  • GdCoxFe1−xO3 (x = 0; 0.2; 0.5; 0.8; 1) have been tested as catalysts in the dry reforming of methane.

  • The catalytic activity increases in the following row: GdFeO3 < GdFe0.5Co0.5O3 < GdCoO3 ⩽ GdFe0.8Co0.2O3 ≈ GdFe0.2Co0.8O3.

Keywords

Perovskites Sol–gel method Fe and Co substitutions Catalysts Dry reforming of methane 

Notes

Acknowledgements

This work was financially supported by the Russian Foundation for Basic Research (Projects No. 18-33-01209 and No. 17-03-00647). The publication has been prepared with the support of the «RUDN University Program 5-100». Research was performed at the Center for Thermogravimetric and Calorimetric Research, Interdisciplinary Center for Nanotechnology and Research Centre for X-ray Diffraction Studies of Research Park of St. Petersburg State University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4:2917–2940CrossRefGoogle Scholar
  2. 2.
    Roseno KTC, Brackmann R, Schmal M (2016) Investigation of LaCoO3, LaFeO3 and LaCo0.5Fe0.5O3 perovskites as catalyst precursors for syngas production by partial oxidation of methane. Int J Hydrogen Energy 1:1–15Google Scholar
  3. 3.
    Nechache A, Cassir M, Ringuedé A (2014) Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review. J Power Sources 258:164–181CrossRefGoogle Scholar
  4. 4.
    Stathopoulos VN, Belessi VC, Bakas TV, Neophytides SG, Costa CN, Pomonis PJ, Efstathiou AM (2009) Comparative study of La–Sr–Fe–O perovskite-type oxides prepared by ceramic and surfactant methods over the CH4 and H2 lean-deNOx. Appl Catal B 93:1–11CrossRefGoogle Scholar
  5. 5.
    Ma Z, Gao X, Yuan X, Zhang L, Zhu Y, Li Z (2011) Simultaneous catalytic removal of NOx and diesel soot particulates over La2 − xAxNi1− yByO4 perovskite-type oxides. Catal Commun. 12:817–821CrossRefGoogle Scholar
  6. 6.
    Efstathiou AM, Stathopoulos VN (2016) Lean burn DeNOx applications stationary and mobile sources. In: Grander P, Parvulescu VL et al. (ed) Perovskites and related mixed oxides:concepts and applications, Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Joshi A (2017) Progress and outlook on gasoline vehicle after treatment systems. Johnson Matthey Tech 61(4):311–325CrossRefGoogle Scholar
  8. 8.
    Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrogen Energy 37:11195–11207CrossRefGoogle Scholar
  9. 9.
    Zhao K, Li L, Zheng A, Huang Z, He F, Shen Y, Wei G, Li H, Zhao Z (2017) Synergistic improvements in stability and performance of the double perovskite-type oxides La2−xSrxFeCoO6 for chemical looping steam methane reforming. Appl Energy 197:393–404CrossRefGoogle Scholar
  10. 10.
    Ao M, Pham G, Sage V, Pareek V (2017) Selectivity enhancement for higher alcohol product in Fischer-Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts. Fuel 206:390–400CrossRefGoogle Scholar
  11. 11.
    Valderrama G, Kiennemann A, Goldwasser M (2008) Dry reforming of CH4 over solid solutions of LaNi1 ÀxCoxO3. Catal Today 135:142–148CrossRefGoogle Scholar
  12. 12.
    Chen S, Liu Y (2009) LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol. Int J Hydrogen Energy 34:4735–4746CrossRefGoogle Scholar
  13. 13.
    Duprez D, Can F, Courtois X et al. (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis : dream or reality. Chem Rev 114:10292–10368CrossRefGoogle Scholar
  14. 14.
    Goldwasser M, Rivas M, Lugo M, Pietri E, Pérez-Zurita J, Cubeiro M, Griboval-Constant A, Leclercq G (2005) Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal Today 107–108:106–113CrossRefGoogle Scholar
  15. 15.
    Goldwasser M, Rivas M, Lugo M, Pietri E, Pérez-Zurita J, Cubeiro M, Griboval-Constant A, Leclercq G (2005) Perovskites as catalysts precursors: synthesis and characterization. J Mol Catal A Chem 228:325–331CrossRefGoogle Scholar
  16. 16.
    Goldwasser M, Rivas M, Lugo M, Pietri E, Pérez-Zurita J, Cubeiro M, Griboval-Constant A, Leclercq G (2003) Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1-xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd). Appl Catal A Gen 255:45–57CrossRefGoogle Scholar
  17. 17.
    Utaka T, Al-Drees S, Ueda J, Iwasa Y, Takeguchi T, Kikuchi R, Eguchi K (2003) Partial oxidation of methane over Ni catalysts based on hexaaliminate- or perovskite-type oxides. Appl Catal A Gen 247:125–131CrossRefGoogle Scholar
  18. 18.
    De Santana M, Crisóstomo R, Neto R, Bellot F, Bargiela P, Carneiro G, Resini C, Carbó-argibay E (2018) Perovskite as catalyst precursors in the partial oxidation of methane : the effect of cobalt, nickel and pretreatment. Catal Today 299:229–241CrossRefGoogle Scholar
  19. 19.
    Afzal S, Quan X, Zhang J (2017) Environmental High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Applied Catal B Environ 206:692–703CrossRefGoogle Scholar
  20. 20.
    Singh S, Singh D (2016) Effect of increasing Sr content on structural and physical properties of K2NiF4-type phase GdSrFeO4. Ceram Int 43:3369–3376CrossRefGoogle Scholar
  21. 21.
    Athayde D, Souza D, Silva A, Vasconcelos D, Nunes E, Diniz da Costa J, Vasconcelos W (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571CrossRefGoogle Scholar
  22. 22.
    Chislova I, Matveeva А, Volkova А, Zvereva I (2011) Sol-gel synthesis of nanostructured perovskite-like gadolinium ferrites. GlasPhys Chem 37:653–660Google Scholar
  23. 23.
    Berezhnaya M, Mittova V, Nguen A, Mittova I (2018) Sol-Gel synthesis and properties of Y1–xBaxFeO3 nanocrystals. Russ J Gen Chem 88:626–631CrossRefGoogle Scholar
  24. 24.
    Shan M, Ding S, Hua J, Cui W, Wang J, Wang J (2018) Effect of annealing temperature on structure and magnetic properties of sol–gel synthesized Co0.8Fe2.2O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 88:593–600CrossRefGoogle Scholar
  25. 25.
    Kumar S, Shandilya M, Thakur S, Thakur N (2018) Structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics synthesized by sol–gel reaction method. J Sol-Gel Sci Technol 88:646–653CrossRefGoogle Scholar
  26. 26.
    Almessiere M, Slimani Y, El Sayed H, Baykal A (2018) Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. J Sol-Gel Sci Technol 88(3):628–638CrossRefGoogle Scholar
  27. 27.
    Sharmaa N, Sharmaa SK, Sachdeva K (2019) Effect of precursors on the morphology and surface area of LaFeO3. Ceram Int 45:7217–7225CrossRefGoogle Scholar
  28. 28.
    Gasparyan H, Neophytides S, Niakolas D, Stathopoulos V, Kharlamova T, Sadykov V, Van der Biest O, Jothinathan E, Louradour E, Joulin J-P, Bebelis S (2011) Synthesis and characterization of doped apatite-type lanthanum silicates for SOFC applications. Solid State Ion 192:158–162CrossRefGoogle Scholar
  29. 29.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  30. 30.
    Dyck C, Peterson R, Yu Z, Krstic V (2005) Crystal structure, thermal expansion and electrical conductivity of dual-phase Gd0.8Sr0.2Co1ÀyFeyO3Àd (0 ≤ y ≤ 1.0). Solid State Ionics 176:103–108CrossRefGoogle Scholar
  31. 31.
    Marezio M, Remeika J, Dernier P (1970) The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr Sect B26:2008–2022CrossRefGoogle Scholar
  32. 32.
    Nedil’ko SA, Ermakova MN, Lyashko MN, Gozhdzinskii SM (1979) Rare earth metal cobaltates (III). Russ J Inorg Chem 24:774Google Scholar
  33. 33.
    Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev. 43(22):7813–7837CrossRefGoogle Scholar
  34. 34.
    Nagaoka K (2004) Modification of Co/TiO2 for dry reforming of methane at 2MPa by Pt, Ru or Ni. Appl Catal A Gen 268:151–158CrossRefGoogle Scholar
  35. 35.
    Valderrama G, Kiennemann A, De Navarro C, Goldwasser M (2018) LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane. Appl Catal A Gen 565:26–33CrossRefGoogle Scholar
  36. 36.
    Sheshkо T, Serov Y, Kryuchkova T, Khayrullina I, Chislova I, Yafarova L, Zvereva I (2017) Study of effect of preparation method and composition on the catalytic properties of complex oxides (Gd,Sr)n+1FenO3n+1 for dry reforming of methane. Nanotech in Russ 12:174–184CrossRefGoogle Scholar
  37. 37.
    Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z (2016) Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Appl Energy 168:193–203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Thermodynamics and Kinetics, Petrodvorets, Institute of ChemistrySaint Petersburg State UniversitySaint-PetersburgRussia
  2. 2.Faculty of Science, Physical and Colloidal Chemistry DepartmentPeople’s Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations