Advertisement

2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysis—condensation of 2-triethoxysilylazulene

  • Ryohei Hayami
  • Tetsuro Izumiya
  • Takashi Kokaji
  • Hajime Nakagawa
  • Satoru Tsukada
  • Kazuki Yamamoto
  • Takahiro GunjiEmail author
Original Paper: Sol–gel, hybrids and solution chemistries
  • 28 Downloads

Abstract

As the raw materials of organic–inorganic dyes, 2-triethoxysilylazulene derivatives (2a2d) were synthesized via a cross-coupling reaction between a 2-haloazulene derivative (1a1d) and triethoxysilane in the presence of a rhodium catalyst. Compounds 2a2d were obtained as colored liquids and characterized using NMR and mass spectroscopy. The UV–Vis spectra of 2a2d were red-shifted as compared to that of hydrogen-substituted azulene derivatives (3a3d). This was attributed to the extended conjugated system and specific properties of the azulene moiety. Compound 2a was polymerized via a hydrolysis–condensation reaction, and the resulting polymer (P2a) was characterized using GPC, 29Si NMR, and FT-IR spectroscopy. The UV–Vis spectrum of P2a was red-shifted as compared to that of 2a, which was attributed to the π–π interactions.

2-Triethoxysilylazulene derivatives show excellent chromogenic properties. The absorption wavelength is dependent on the type of functional groups located at the 1,3-position.

Highlights

  • 2-Triethoxysilylazulene derivatives were synthesized via a cross-coupling reaction between a 2-haloazulene derivative and triethoxysilane.

  • The UV–Vis spectra of these derivatives are dependent on the type of functional groups.

  • 2-Triethoxysilylazulene polymer was prepared via a hydrolysis–condensation reaction.

  • The UV–Vis spectrum of the polymer was slightly red-shifted as compared to that of the monomer.

Keywords

Triethoxysilylazulene derivatives UV–Vis spectra Hydrolysis–condensation Organic–inorganic dyes 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_4991_MOESM1_ESM.docx (27.1 mb)
Supplementary Information.

References

  1. 1.
    Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) J Mater Chem 20:9306–9321CrossRefGoogle Scholar
  2. 2.
    Sánchez del Río M, Martinetto P, Reyes-Valerio C, Doopyhée E, Suárez M (2006) Archaeometry 48:115–130CrossRefGoogle Scholar
  3. 3.
    Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2014) Chem Mater 26:221–238CrossRefGoogle Scholar
  4. 4.
    Choi DH, Park JH, Lee JH, Lee SD (2000) Thin Solid Films 360:213–221CrossRefGoogle Scholar
  5. 5.
    Chaput F, Riehl D, Boilot JP, Cargnelli K, Canva M, Lévy Y, Brun A (1996) Chem Mater 8:312–314CrossRefGoogle Scholar
  6. 6.
    Serwadczak M, Kucharski S (2006) J Sol–Gel Sci Technol 37:57–62CrossRefGoogle Scholar
  7. 7.
    Demirel GB, Dilsiz N, Çakmak M, Çaykara T (2011) J Mater Chem 21:3189–3196CrossRefGoogle Scholar
  8. 8.
    McDonald RN, Richmond JM, Curtis JR, Petty HE, Hoskins TL (1976) J Org Chem 41:1811–1821CrossRefGoogle Scholar
  9. 9.
    Anderson Jr. AG, Steckler BM (1959) J Am Chem Soc 81:4941–4946CrossRefGoogle Scholar
  10. 10.
    Lemal D, Goldman G (1988) J Chem Educ 65:923–925CrossRefGoogle Scholar
  11. 11.
    Michl J, Thulstrup E (1976) Tetrahedron 32:205–209CrossRefGoogle Scholar
  12. 12.
    Yamaguchi Y, Ogawa K, Nakayama K, Ohba Y, Katagiri H (2013) J Am Chem Soc 135:19095–19098CrossRefGoogle Scholar
  13. 13.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  14. 14.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  17. 17.
    Armarego WLF, Chai C (2012) Purification of laboratory chemicals, 7th ed. Butterworth-Heinemann, Oxford, UK.Google Scholar
  18. 18.
    Zhang J, Petoud S (2008) Chem Eur J 14:1264–1272CrossRefGoogle Scholar
  19. 19.
    Koch M, Blacque O, Venkatesan K (2012) Org Lett 14:1580–1583CrossRefGoogle Scholar
  20. 20.
    Ito S, Nomura A, Morita N, Kabuto C, Kobayashi H, Maejima S, Fujimori K, Yasunami M (2002) J Org Chem 67:7295–7302CrossRefGoogle Scholar
  21. 21.
    Nozoe T, Imafuku K, Yin B, Honda M, Goto Y, Hara Y, Andoh T, Yamamoto H (1988) Bull Chem Soc Jpn 61:2531–2539CrossRefGoogle Scholar
  22. 22.
    Nozoe T, Takase K, Kato M, Nogi T (1971) Tetrahedron 27:6023–6035CrossRefGoogle Scholar
  23. 23.
    Nihon University (2008) Process for production of azulene derivatives and azulene derivatives. Japan patent JP 2008-285435A.Google Scholar
  24. 24.
    Bing LB, Yun-Shan L (2010) J Heterocycl Chem 48:205–208Google Scholar
  25. 25.
    McDonald RN, Richmond JM, Curtis JR, Petty HE, Hoskins TL (1976) J Org Chem 41:1811–1821CrossRefGoogle Scholar
  26. 26.
    Morita T, Takase K (1982) Bull Chem Soc Jpn 55:1144–1152CrossRefGoogle Scholar
  27. 27.
    Ueno T, Toda H, Yasunami M, Yoshifuji M (1996) Bull Chem Soc Jpn 69:1645–1656CrossRefGoogle Scholar
  28. 28.
    Murata M, Yamasaki H, Ueta T, Nagata M, Ishikura M, Watanabe S, Masuda Y (2007) Tetrahedron 63:4087–4094CrossRefGoogle Scholar
  29. 29.
    Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y (2002) Org Lett 4:1843–1845CrossRefGoogle Scholar
  30. 30.
    Yamanoi Y, Nishihara H (2006) Tetrahedron Lett 47:7157–7161CrossRefGoogle Scholar
  31. 31.
    Seganish WM, Handy CJ, DeShong P (2005) J Org Chem 70:8948–8955CrossRefGoogle Scholar
  32. 32.
    Manoso AS, DeShong P (2001) J Org Chem 66:7449–7455CrossRefGoogle Scholar
  33. 33.
    Denmark SE, Kallemeyn JM (2003) Org Lett 5:3483–3486CrossRefGoogle Scholar
  34. 34.
    Handy CJ, Manoso AS, McElroy WT, Seganish WM, DeShong P (2005) Tetrahedron 61:12201–12225CrossRefGoogle Scholar
  35. 35.
    Tétreault N, Muthyala RS, Liu RSH, Steer RP (1999) J Phys Chem A 103:2524–2531CrossRefGoogle Scholar
  36. 36.
    Shevyakov SV, Li H, Muthyala R, Asato AE, Croney JC, Jameson DM, Liu RSH (2003) J Phys Chem A 107:3295–3299CrossRefGoogle Scholar
  37. 37.
    Patalinghug WC, Chang M, Solis J (2007) J Chem Educ 84:1945–1947CrossRefGoogle Scholar
  38. 38.
    Foggi P, Neuwahl FVR, Moroni L, Salvi PR (2003) J Phys Chem A 107:1689–1696CrossRefGoogle Scholar
  39. 39.
    Walton DRM (1965) J Organomet Chem 3:438–441CrossRefGoogle Scholar
  40. 40.
    Maeda H, Maeda T, Mizuno K (2012) Molecules 17:5108–5125CrossRefGoogle Scholar
  41. 41.
    Abe Y, Gunji T (2004) Prog Polym Sci 29:149–182CrossRefGoogle Scholar
  42. 42.
    Gunji T, Tozune T, Kaburaki H, Arimitsu K, Abe Y (2013) J Polym Sci A 51:4732–4741CrossRefGoogle Scholar
  43. 43.
    Gunji T, Kaburagi H, Tsukada S, Abe Y (2015) J Sol–Gel Sci Technol 75:564–573CrossRefGoogle Scholar
  44. 44.
    Hayami R, Nishikawa I, Hisa T, Nakashima H, Sato Y, Ideno Y, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2018) J Sol–Gel Sci Technol 88:660–670CrossRefGoogle Scholar
  45. 45.
    Yoldas BE (1986) J Non-Cryst Solids 82:11–23CrossRefGoogle Scholar
  46. 46.
    Sun X, Xu Y, Jiang D, Yang D, Wu D, Sun Y, Yang Y, Yuan H, Deng F (2006) Colloids Surf A 289:149–157CrossRefGoogle Scholar
  47. 47.
    Yoshinaga I, Yamada N, Katayama S (2003) J Sol–Gel Sci Technol 28:65–70CrossRefGoogle Scholar
  48. 48.
    Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) J Sol–Gel Sci Technol 39:175–183CrossRefGoogle Scholar
  49. 49.
    Olejniczak Z, Łęczka M, Cholewa-Kowalska K, Wojtach K, Rokita M, Mozgawa W (2005) J Mol Struct 744–747:465–471CrossRefGoogle Scholar
  50. 50.
    Mori H, Yamada M (2012) Colloid Polym Sci 290:1879–1891CrossRefGoogle Scholar
  51. 51.
    Pescarmona PP, Maschmeyer T (2001) Aust J Chem 54:583–596CrossRefGoogle Scholar
  52. 52.
    Li YS, Wang Y, Ceesay S (2009) Spectrochim Acta A 71:1819–1824CrossRefGoogle Scholar
  53. 53.
    Amicangelo JC, Leenstra WR (2003) J Am Chem Soc 125:14698–14699CrossRefGoogle Scholar
  54. 54.
    Murai M, Amir E, Amir RJ, Hawker CJ (2012) Chem Sci 3:2721–2725CrossRefGoogle Scholar
  55. 55.
    Zhuo D, Gu A, Liang G, Hu JT, Zhou C, Yuan L (2011) Polym Adv Technol 22:2617–2625CrossRefGoogle Scholar
  56. 56.
    Chang CC, Huang FH, Lin ZM, Cheng LF (2015) J Coat Technol Res 12:731–738CrossRefGoogle Scholar
  57. 57.
    Seifert A, Ladewig K, Schönherr P, Hofmann K, Lungwitz R, Roth I, Pohlers A, Hoyer W, Baumann G, Schulze S, Hietschold M, Moszner N, Burtscher P, Spange S (2010) J Sol–Gel Sci Technol 53:328–341CrossRefGoogle Scholar
  58. 58.
    Jain S, Goossens JGP, van Duin M (2006) Macromol Symp 233:225–234CrossRefGoogle Scholar
  59. 59.
    Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Chem Mater 20:1548–1554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ryohei Hayami
    • 1
  • Tetsuro Izumiya
    • 1
  • Takashi Kokaji
    • 1
  • Hajime Nakagawa
    • 1
  • Satoru Tsukada
    • 1
    • 2
  • Kazuki Yamamoto
    • 1
  • Takahiro Gunji
    • 1
    Email author
  1. 1.Department of Pure and Applied Chemistry, Faculty of Science and TechnologyTokyo University of ScienceNodaJapan
  2. 2.Advanced Automotive Research Collaborative Laboratory, Graduate School of EngineeringHiroshima UniversityHigashi-Hiroshima CityJapan

Personalised recommendations