Advertisement

Nanorose-like ZnCo2O4 coatings synthesized via sol–gel route: morphology, grain growth and DFT simulations

  • Ella Awaltanova
  • Amun AmriEmail author
  • Nicholas Mondinos
  • Mohammednoor Altarawneh
  • T. S. Y. Moh
  • Hantarto Widjaja
  • Lee Siang Chuah
  • Hooi Ling Lee
  • Chun Yang-Yin
  • M. Mahbubur Rahman
  • Idral Amri
  • Iwantono Iwantono
  • Zhong-Tao JiangEmail author
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 28 Downloads

Abstract

Ternary cobalt-based metal oxide (ZnCo2O4) has been successfully coated onto aluminum substrate via sol–gel method. The coatings were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and UV–Vis–NIR spectrophotometry. Thermal degradation of the coatings was probed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Model of crystal growth kinetics and density functional theory (DFT) calculations further probed the crystalline structure evolution. The predicted ZnCo2O4 crystalline structures were confirmed by XRD and EDX. The grain growth kinetic model for ZnCo2O4, derived from Lifshitz–Slyozov–Wagner (LSW) theory, determined that the growth of crystalline phases is unaffected by the annealing temperature; however, the crystallites’ sizes decreased with the increase in precursor concentration. DFT analysis indicated that structural energy stability between the bulk state and slabs of ZnCo2O4 was at two oxygen layers (O-layers) with an optimum grain width of 17.21 Å. Interestingly, the morphology of ZnCo2O4 represented a rose-like template structure formed by inter-connecting layers of nanosheets. This unique surface morphology enhanced the optical absorptance properties up to α = 70.7%.

Highlights

  • The kinetics, structural and absorptance properties of zinc and cobalt mixed oxides are not well understood due to lack of prior consolidated research findings.

  • Therefore, our research focuses on the formation, grain growth kinetics, mineralogical and surface structure, as well as the absorptance properties of zinc and cobalt mixed oxides coating on aluminum substrates.

  • This represents a novel holistic analysis within the ambit of sol-gel science.

  • Furthermore, the novelty involves the incorporation of the experimental results complemented by grain growth kinetics modelling using LSW model and simulation of the grain size against the coating thickness of ZnCo2O4.

  • We also developed a model at a smaller scale and utilized the density functional theory (DFT) to calculate the stability of each case in the model.

Keywords

Sol–gel Absorptance Crystal growth Nanorose Crystalline structural Zinc cobalt oxide. 

Notes

Acknowledgements

This research work was financially supported by IRU-MRUN Collaborative Research Program (2015–2018).

Compliance with ethical standards

Conflict of interest

This research work was financially supported by Collaborative Research Program between Murdoch University and Universitas Riau (IRU-MRUN) in 2015-2018. The authors thank to University Sains Malaysia especially to Dr. Chuah Lee Siang for provide the characterization equipment and appreciation to Prof. Amun Amri and Dr. Zhong-Tao Jiang for his encouragement in this work.

References

  1. 1.
    Wang Q, Zhu L, Sun L, Liu Y, Jiao L (2015) Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A 3(3):982–985CrossRefGoogle Scholar
  2. 2.
    Zhang G-Y, Guo B, Chen J (2006) MCo2O4 (M = Ni, Cu, Zn) nanotubes: template synthesis and application in gas sensors. Sensors Actuators B Chem 114(1):402–409CrossRefGoogle Scholar
  3. 3.
    Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011CrossRefGoogle Scholar
  4. 4.
    Kim TW, Woo MA, Regis M, Choi K-S (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5(13):2370–2374CrossRefGoogle Scholar
  5. 5.
    Xu X, Cao C (2010) Hydrothermal synthesis of Co-doped ZnO flakes with room temperature ferromagnetism. J Alloys Compounds 501(2):265–268CrossRefGoogle Scholar
  6. 6.
    Wei X, Chen D, Tang W (2007) Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method. Mater Chem Phys 103(1):54–58CrossRefGoogle Scholar
  7. 7.
    Lima MK, Fernandes DM, Silva MF, Baesso ML, Neto AM, de Morais GR, Nakamura CV, de Oliveira Caleare A, Hechenleitner AAW, Pineda EAG (2014) Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties. JSol Gel Sci Technol 72(2):301–309CrossRefGoogle Scholar
  8. 8.
    Gautier JL, Trollund E, Ríos E, Nkeng P, Poillerat G (1997) Characterization of thin CuCo2O4 films prepared by chemical spray pyrolysis. Study of their electrochemical stability by ex situ spectroscopic analysis. J Electroanalytical Chem 428(1-2):47–56CrossRefGoogle Scholar
  9. 9.
    Amini MN, Dixit H, Saniz R, Lamoen D, Partoens B (2014) The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels. Phys Chem Chem Phys 16(6):2588–2596CrossRefGoogle Scholar
  10. 10.
    Wong EM, Bonevich JE, Searson PC (1998) Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J Phys Chem B 102(40):7770–7775CrossRefGoogle Scholar
  11. 11.
    Schlenker T, Valero ML, Schock H, Werner J (2004) Grain growth studies of thin Cu (In, Ga) Se2 films. J Cryst Growth 264(1-3):178–183CrossRefGoogle Scholar
  12. 12.
    Duffie JA, Beckman WA (2013). Solar engineering of thermal processes. John Wiley & Sons, CanadaGoogle Scholar
  13. 13.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  15. 15.
    Grimme S (2006) Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  16. 16.
    Kim Y-S, Tai W-P, Shu S-J (2005) Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1-2):153–160CrossRefGoogle Scholar
  17. 17.
    Ashok A, Kumar A, Bhosale RR, Saleh MAH, Van den Broeke LJ (2015) Cellulose assisted combustion synthesis of porous Cu–Ni nanopowders RSC Adv 5(36):28703–28712CrossRefGoogle Scholar
  18. 18.
    Brockner W, Ehrhardt C, Gjikaj M (2007) Thermal decomposition of nickel nitrate hexahydrate, Ni (NO3)2·6H2O, in comparison to Co (NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim Acta 456(1):64–68CrossRefGoogle Scholar
  19. 19.
    Ehrhardt C, Gjikaj M, Brockner W (2005) Thermal decomposition of cobalt nitrato compounds: Preparation of anhydrous cobalt (II) nitrate and its characterisation by infrared and Raman spectra. Thermochim Acta 432(1):36–40CrossRefGoogle Scholar
  20. 20.
    Yokosuka Y, Oki K, Nishikiori H, Tatsumi Y, Tanaka N, Fujii T (2009) Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol–gel process. Res Chem Intermediates 35(1):43–53CrossRefGoogle Scholar
  21. 21.
    Amri A, Jiang Z-T, Pryor T, Yin C-Y, Xie Z, Mondinos N (2012) Optical and mechanical characterization of novel cobalt-based metal oxide thin films synthesized using sol–gel dip-coating method. Surf Coatings Technol 207:367–374CrossRefGoogle Scholar
  22. 22.
    Peiteado M, Caballero AC, Makovec D (2010) Thermal evolution of ZnCo2O4 spinel phase in air. J Ceramic Soc Jpn 118(1377):337–340CrossRefGoogle Scholar
  23. 23.
    Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(3):154–160CrossRefGoogle Scholar
  24. 24.
    Oskam G, Nellore A, Penn RL, Searson PC (2003) The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J Phys Chem B 107(8):1734–1738CrossRefGoogle Scholar
  25. 25.
    Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8(3):1237–1259CrossRefGoogle Scholar
  26. 26.
    Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. Journal of physics and chemistry of solids 19(1-2):35–50CrossRefGoogle Scholar
  27. 27.
    Wagner C (1961) Theory of precipitate change by redissolution. Z Elektrochem 65:581–591Google Scholar
  28. 28.
    Long LQ, Hue TTB, Hoan NX, Cuong LV, Thang PD, Hoang T, Truc TA (2016) Growth mechanism and stability of magnetite nanoparticles synthesized by the hydrothermal method. J Nanosci Nanotechnol 16(7):7373–7379CrossRefGoogle Scholar
  29. 29.
    Kohn W (1999) Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71(5):1253CrossRefGoogle Scholar
  30. 30.
    Zhang D, Zhang Y, Li X, Luo Y, Huang H, Chu PK (2016) Self-assembly of mesoporous ZnCo2O4 nanomaterials: density functional theory calculation and flexible all-solid-state energy storage. J Mater Chem A 4(2):568–577CrossRefGoogle Scholar
  31. 31.
    Hao S, Zhang B, Ball S, Copley M, Xu Z, Srinivasan M, Zhou K, Mhaisalkar S, Huang Y (2015) Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J Power Sources 294:112–119CrossRefGoogle Scholar
  32. 32.
    Guo H, Chen J, Weng W, Wang Q, Li S (2014) Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem Eng J 239:192–199CrossRefGoogle Scholar
  33. 33.
    Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles–a new perspective. CrystEngComm 17(36):6809–6830CrossRefGoogle Scholar
  34. 34.
    Lin M, Tan HR, Tan JPY, Bai S (2013) Understanding the growth mechanism of α-Fe2O3 nanoparticles through a controlled shape transformation. J Phys Chem C 117(21):11242–11250CrossRefGoogle Scholar
  35. 35.
    Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48(20):11954–11961CrossRefGoogle Scholar
  36. 36.
    Bayón R, San Vicente G, Maffiotte C, Morales Á (2008) Preparation of selective absorbers based on CuMn spinels by dip-coating method. Renew Energy 33(2):348–353CrossRefGoogle Scholar
  37. 37.
    Boström T, Wäckelgård E, Westin G (2003) Solution-chemical derived nickel–alumina coatings for thermal solar absorbers. Solar Energy 74(6):497–503CrossRefGoogle Scholar
  38. 38.
    Amri A, Jiang ZT, Pryor T, Yin C-Y, Djordjevic S (2014) Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: a review. Renew Sustainable Energy Rev 36:316–328CrossRefGoogle Scholar
  39. 39.
    Amri A, Duan X, Yin C-Y, Jiang Z-T, Rahman MM, Pryor T (2013) Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ella Awaltanova
    • 1
    • 2
  • Amun Amri
    • 1
    Email author
  • Nicholas Mondinos
    • 2
  • Mohammednoor Altarawneh
    • 2
  • T. S. Y. Moh
    • 3
  • Hantarto Widjaja
    • 2
  • Lee Siang Chuah
    • 4
  • Hooi Ling Lee
    • 5
  • Chun Yang-Yin
    • 6
  • M. Mahbubur Rahman
    • 2
    • 7
  • Idral Amri
    • 1
  • Iwantono Iwantono
    • 8
  • Zhong-Tao Jiang
    • 2
    Email author
  1. 1.Department of Chemical EngineeringUniversity of RiauPekanbaruIndonesia
  2. 2.Surface Analysis & Materials Engineering Research Group, School of Engineering and Information TechnologyMurdoch UniversityPerthAustralia
  3. 3.School of Engineering and TechnologyUniversity College of Technology SarawakSibuMalaysia
  4. 4.Department of Physics, School of Distance EducationUniversiti Sains MalaysiaMindenMalaysia
  5. 5.Nanomaterials Research Group, School of Chemical ScienceUniversiti Sains MalaysiaMindenMalaysia
  6. 6.Newcastle University in SingaporeSingaporeSingapore
  7. 7.Department of PhysicsJahangirnagar UniversitySavarBangladesh
  8. 8.Department of PhysicsUniversity of RiauPekanbaruIndonesia

Personalised recommendations