The effect of cellulose nanocrystals and pH value on the flotation process for extraction of minerals

  • Elena F. KrivoshapkinaEmail author
  • Vasily I. Mikhaylov
  • Igor A. Perovskiy
  • M. A. Torlopov
  • Yury I. Ryabkov
  • Pavel V. Krivoshapkin
Orginal Paper: Industrial and technological applications of sol-gel and hybrid materials


Nowadays, the development of the new flotation reagents is focused on the environmental-friendly technologies and reducing the costs of industrial wastes treatment and re-cultivation as well. Biopolymer particles are anattractive object for designing effective non-toxic processes of enrichment and extraction of valuable mineral raw materials. The effect of cellulose nanocrystals particles on the electrokinetic properties of hybrid and individual dispersions of silica and titania was studied. The obtained data will allow to implement an effective flotation process of titanium-containing or titanium oxide ores on the example of leucoxene ores of the Yaregskoye deposit, Komi Republic (Russia). Calculations of the interaction of the minerals surface (titania and silica) with nanosized cellulose particles based on the theory of DLVO are presented.


  • Cellulose nanocrystals were used as a new agent for the separation of silica and titania.

  • Electrokinetic characteristics of disperse systems (nanocellulose, titania and silica) were studied.

  • Based on the DLVO theory, the mechanism of fixation of CNC on individual oxides was calculated and confirmed.

  • The effective pH range of silica and titania separation is from 2 to 3.


Flotation Cellulose nanocrystals Leucoxene, DLVO Electrostatic Silica Titania 



The reported study was supported by RFBR, research project No.18-33-20230. The study was performed using the equipment of the Center for Shared Use of Scientific Equipment “Khimiya” (Institute of chemistry, FRC, Komi SC UB RAS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sevost’yanov MA, Fedotov AY, Kolmakov AG et al. (2014) Mechanical properties of nanostructured nitinol/chitosan composite material. Inorg Mater Appl Res 5:344–346. CrossRefGoogle Scholar
  2. 2.
    Jessica Kopf B, Ulasevich S, Baidukova O et al. (2016) Ultrasonically produced porous sponge layer on titanium to guide cell behavior. Adv Eng Mater.
  3. 3.
    Kuznetsova TF, Ivanets AI, Katsoshvili LL (2017) Formation of titanosilicate precursors of an active adsorption phase. Russ J Phys Chem A. 91:744–748. CrossRefGoogle Scholar
  4. 4.
    Li W, Yan C, Huang W, Wang Z, Yuan Z (2002) Titanium pigment material: history, present situation and development. Mod Chem Ind 22:5–9Google Scholar
  5. 5.
    Middlemas S, Fang ZZ, Fan P (2013) A new method for production of titanium dioxide pigment. Hydrometallurgy 131-132:107–113. CrossRefGoogle Scholar
  6. 6.
    Seisenbaeva GA, Cojocaru B, Jurca B et al. (2017) Mesoporous tantalum oxide photocatalyst: structure and activity evaluation. Chem Select 2:421–427. Google Scholar
  7. 7.
    Yakovlev AV, Milichko VA, Vinogradov VV, Vinogradov AV (2016) Inkjet color printing by interference nanostructures. ACS Nano 10:3078–3086. CrossRefGoogle Scholar
  8. 8.
    Wang X, Li C, Yue H et al. (2018) Effects of mechanical activation on the digestion of ilmenite in dilute H2SO4. Chin J Chem Eng.
  9. 9.
    Degnan T (2018) The global titanium dioxide market predicted to reach $16.79 bn by 2023. Focus Catal 2018:2–3.
  10. 10.
    Ignatiev DV, Burtsev IN (1997) The leucoxene of Timan: mineralogy and problems of technology. Nauka, St. PetersburgGoogle Scholar
  11. 11.
    Nikolaev AA, Kirpichev DE, Samokhin AV, Nikolaev AV (2017) Thermochemical plasma-Arc treatment of leucoxene concentrate. Inorganic Mater 8:406–411. CrossRefGoogle Scholar
  12. 12.
    Sadykhov GB, Zablotskaya YV, Anisonyan KG, Olyunina TV (2016) Combined use of the leucoxene ores of the Yarega deposit with the formation of synthetic rutile and Wollastonite and the recovery of rare and rare-earth elements. Russ Metall 11:1005–1011. CrossRefGoogle Scholar
  13. 13.
    Perovskiy IA, Khramenkova EV, Pidko EA et al. (2018) Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents. Chem Eng J 354:727–739. CrossRefGoogle Scholar
  14. 14.
    Gázquez MJ, Bolívar JP, Garcia-Tenorio R, Vaca F (2014) A review of the production cycle of titanium dioxide pigment. Mater Sci Appl 05:441–458. Google Scholar
  15. 15.
    Zhang W, Zhu Z, Cheng CY (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108:177–188. CrossRefGoogle Scholar
  16. 16.
    Braun JH, Baidins A, Marganski RE (1992) TiO2 pigment technology: a review. Prog Org Coat 20:105–138. CrossRefGoogle Scholar
  17. 17.
    Laitinen O, Hartmann R, Sirviö JA et al. (2016) Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz. Chem Eng Sci 144:260–266. CrossRefGoogle Scholar
  18. 18.
    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393.
  19. 19.
    Surov OV, Voronova MI, Zakharov AG (2017) Functional materials based on nanocrystalline cellulose. Russ Chem Rev 86:907–933. CrossRefGoogle Scholar
  20. 20.
    Liimatainen H, Sirviö J, Haapala A et al. (2011) Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydr Polym 83:2005–2010. CrossRefGoogle Scholar
  21. 21.
    Hartmann R, Kinnunen P, Illikainen M (2018) Cellulose-mineral interactions based on the DLVO theory and their correlation with flotability. Miner Eng 122:44–52. CrossRefGoogle Scholar
  22. 22.
    Surov OV, Voronova MI, Rubleva NV et al. (2018) A novel effective approach of nanocrystalline cellulose production: oxidation–hydrolysis strategy. Cellulose 25:5035–5048. CrossRefGoogle Scholar
  23. 23.
    Torlopov MA, Martakov IS, Mikhaylov VI et al. (2018) Disk-like nanocrystals prepared by solvolysis from regenerated cellulose and colloid properties of their hydrosols. Carbohydr Polym 200:162–172. CrossRefGoogle Scholar
  24. 24.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. CrossRefGoogle Scholar
  25. 25.
    Salas C, Nypelö T, Rodriguez-Abreu C et al. (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396. CrossRefGoogle Scholar
  26. 26.
    Liu C, Li B, Du H et al. (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724. CrossRefGoogle Scholar
  27. 27.
    Martakov IS, Torlopov MA, Mikhaylov VI et al. (2018) Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J Sol–Gel Sci Technol 88:13–21. CrossRefGoogle Scholar
  28. 28.
    Mikhaylov VI, Krivoshapkina EF, Trigub AL et al. (2018) Detection and adsorption of Cr(VI) ions by mesoporous Fe–Alumina films. ACS Sustain Chem Eng 6:9283–9292. CrossRefGoogle Scholar
  29. 29.
    Torlopov MA, Mikhaylov VI, Udoratina EV et al. (2018) Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 25:1031–1046. CrossRefGoogle Scholar
  30. 30.
    Volkova AV, Ermakova LE, Golikova EV (2017) Peculiarities of coagulation of the pseudohydrophilic colloids: aggregate stability of the positively charged γ-Al2O3 hydrosol in NaCl solutions. Colloids Surf A 516:129–138. CrossRefGoogle Scholar
  31. 31.
    Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modelling and simulationButterworth-Heinemann, Woburn, MA OxfordGoogle Scholar
  32. 32.
    Clark MM (2009) Transport modeling for environmental engineers and scientists. Wiley, New YorkGoogle Scholar
  33. 33.
    Smitthipong W, Chollakup R, Nardin M (2014) Bio-based composites for high-performance materials: from strategy to industrial application. CRC Press, Boca RatonCrossRefGoogle Scholar
  34. 34.
    Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-Ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131Google Scholar
  35. 35.
    Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. CrossRefGoogle Scholar
  36. 36.
    Oh SY, Yoo DIl, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428. CrossRefGoogle Scholar
  37. 37.
    Olsson A-M, Salmén L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339:813–818. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elena F. Krivoshapkina
    • 1
    • 2
    Email author
  • Vasily I. Mikhaylov
    • 1
  • Igor A. Perovskiy
    • 3
  • M. A. Torlopov
    • 1
  • Yury I. Ryabkov
    • 1
  • Pavel V. Krivoshapkin
    • 2
  1. 1.Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”SyktyvkarRussian Federation
  2. 2.ITMO UniversitySaint-PetersburgRussian Federation
  3. 3.Institute of Geology of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”SyktyvkarRussian Federation

Personalised recommendations