Advertisement

Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties

  • M. I. A. Abdel MaksoudEmail author
  • Ahmed El-ghandourEmail author
  • Gharieb S. El-Sayyad
  • A. S. Awed
  • A. H. Ashour
  • Ahmed I. El-Batal
  • Mohamed Gobara
  • E. K. Abdel-Khalek
  • M. M. El-Okr
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 31 Downloads

Abstract

Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy dispersive X-ray (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). EDX analyses affirm the stoichiometry of the synthesized samples with the intended ratios. The FTIR and XRD prove the presence of a single-phase cubic spinel structure for all as-synthesized samples. The dislocation, the inter-chain distance and the distortion parameter values decrease with increasing Mn2+ content, which outweigh the improvement of the crystal structure of the doped CFO samples. SEM micrographs illustrate that the incorporation of Mn2+ significantly soars the porosity of the samples. TEM images reveal that the samples comprise particles in the nanometer range with spherical shape and porous nature. Thermal analyses show that the weight loss is dependent on Mn2+ content in the sample. For instance, at x = 0, a slight variation in the weight loss estimated by 8% is observed while at x = 0.25 the weight loss has reached up to 40%. The dielectric losses (8 × 105) of Co0.5Mn0.5 Fe2O4 is enough to meet the demands of microwave applications. Finally, a reduction in the magnetization of the pure CFO from 68.419 emu g−1 to 50.307 emu g−1 is achieved at x = 0.25.

Herein, manganese substituted cobalt ferrites were synthesized using a facile sol–gel method. The Rietveld refinements of Co1-xMnxFe2O4 have studied. SEM images have indicated that the surface of the as-synthesized NPs has some porous shapes. EDX analyses have affirmed the stoichiometry of the samples. The TEM image reveals that particles are in the nanometer range. Thermal analyses show that the weight loss is dependent on Mn2+ content in the sample. The dielectric losses (8 × 105) of Co0.5Mn0.5 Fe2O4 is enough to meet the demands of microwave applications. The hysteresis loops reveal that the magnetic behavior of the CFO NPs is significantly influenced by Mn2+ ions substitution.

Highlights

  • Mn2+ is successfully incorporated into cobalt ferrite (CoFe2O4) via sol–gel method.

  • XRD and Williamson-Hall analyses reveal that all samples comprise nanoparticles.

  • SEM micrographs show that the samples’ porosity soars with increasing Mn2+ content.

  • TEM images reveal that the samples consist of spherical nanoparticle porous nature.

  • The sample of the highest content of Mn2+ has the lowest Gibbs energy.

Keywords

Sol–gel Manganese-cobalt ferrite TEM SEM micrographs Magnetization 

Notes

Acknowledgements

The authors thank the Materials Science Unit, National Center for Radiation Research and Technology, Egypt, for financing and supporting this study under the project synthesizing and characterizations of nanomagnetic materials. The authors appreciate the work introduced by the Zeiss microscopy team in Cairo for their invaluable advice during this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_4964_MOESM1_ESM.docx (1.3 mb)
Supplementary information.

References

  1. 1.
    Supriya S, Kumar S, Kar M (2017) Electrical properties and dipole relaxation behavior of zinc-substituted cobalt ferrite. J Electron Mater 46(12):6884–6894CrossRefGoogle Scholar
  2. 2.
    Rani R, Kumar G, Batoo KM, Singh M (2014) Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique. Appl Phys A 115(4):1401–1407CrossRefGoogle Scholar
  3. 3.
    Sinfrônio F, Santana P, Coelho S, Silva F, de Menezes A, Sharma S (2017) Magnetic and structural properties of cobalt-and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J Electron Mater 46(2):1145–1154CrossRefGoogle Scholar
  4. 4.
    Rani BJ, Mageswari R, Ravi G, Ganesh V, Yuvakkumar R (2017) Physico-chemical properties of pure and zinc incorporated cobalt nickel mixed ferrite (ZnxCo0.005−xNi0.005 Fe2O4, where x = 0, 0.002, 0.004 M) nanoparticles. J Mater Sci Mater Electron 28(21):16450–16458CrossRefGoogle Scholar
  5. 5.
    Humbe AV, Kounsalye JS, Shisode MV, Jadhav K (2018) Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70− xCuxZn0. 30Fe2O4 spinel ferrite. Ceram Int 44(5):5466–5472CrossRefGoogle Scholar
  6. 6.
    Nlebedim I, Snyder JE, Moses AJ, Jiles D (2010) Dependence of the magnetic and magnetoelastic properties of cobalt ferrite on processing parameters. J Magn Magn Mater 322(24):3938–3942CrossRefGoogle Scholar
  7. 7.
    Singhal S, Jauhar S, Chandra K, Bansal S (2013) Spin canting phenomenon in cadmium doped cobalt ferrites, CoCdxFe2−xO4 (x = 0·0, 0·2, 0·4, 0·6, 0·8 and 1·0), synthesized using sol–gel auto combustion method. Bull Mater Sci 36(1):107–114CrossRefGoogle Scholar
  8. 8.
    Turtelli RS, Atif M, Mehmood N, Kubel F, Biernacka K, Linert W, Grössinger R, Kapusta C, Sikora M (2012) Interplay between the cation distribution and production methods in cobalt ferrite. Mater Chem Phys 132(2-3):832–838CrossRefGoogle Scholar
  9. 9.
    Atif M, Sato Turtelli R, Grossinger R, Kubel F (2013) Influence of manganese substitution on the microstructure and magnetostrictive properties of Co1−xMnxFe2O4 (x = 0.0–0.4) ferrite. J Appl Phys 113(15):153902CrossRefGoogle Scholar
  10. 10.
    Yadav S, Shinde S, Bhatt P, Meena S, Rajpure K (2015) Distribution of cations in Co1−xMnxFe2O4 using XRD, magnetization and Mössbauer spectroscopy. J Alloy Compd 646:550–556CrossRefGoogle Scholar
  11. 11.
    Ramana C, Kolekar Y, Kamala Bharathi K, Sinha B, Ghosh K (2013) Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J Appl Phys 114(18):183907CrossRefGoogle Scholar
  12. 12.
    Vlazan P, Miron I, Sfirloaga P (2015) Cobalt ferrite substituted with Mn: synthesis method, characterization and magnetic properties. Ceram Int 41(3):3760–3765CrossRefGoogle Scholar
  13. 13.
    Balavijayalakshmi J, Suriyanarayanan N, Jayapraksah R (2012) Influence of copper on the magnetic properties of cobalt ferrite nano particles. Mater Lett 81:52–54CrossRefGoogle Scholar
  14. 14.
    Guoxi X, Yuebin X (2016) Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater Lett 164:444–448CrossRefGoogle Scholar
  15. 15.
    Sekhar BC, Rao G, Caltun O, Lakshmi BD, Rao BP, Rao PS (2016) Magnetic and magnetostrictive properties of Cu substituted Co-ferrites. J Magn Magn Mater 398:59–63CrossRefGoogle Scholar
  16. 16.
    Ali MB, El Maalam K, El Moussaoui H, Mounkachi O, Hamedoun M, Masrour R, Hlil E, Benyoussef A (2016) Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J Magn Magn Mater 398:20–25CrossRefGoogle Scholar
  17. 17.
    Kim YI, Kim D, Lee CS (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys B 337(1-4):42–51CrossRefGoogle Scholar
  18. 18.
    Hyeon T, Chung Y, Park J, Lee SS, Kim Y-W, Park BH (2002) Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J Phys Chem B 106(27):6831–6833CrossRefGoogle Scholar
  19. 19.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single‐crystal ferrite microspheres. Angew Chem 117(18):2842–2845CrossRefGoogle Scholar
  20. 20.
    Shafi KV, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10(11):3445–3450CrossRefGoogle Scholar
  21. 21.
    Pham-Huu C, Keller N, Estournes C, Ehret G, Greneche J, Ledoux M (2003) Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes. Phys Chem Chem Phys 5(17):3716–3723CrossRefGoogle Scholar
  22. 22.
    Moumen N, Pileni M (1996) New syntheses of cobalt ferrite particles in the range 2−5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem Mater 8(5):1128–1134CrossRefGoogle Scholar
  23. 23.
    Maksoud MA, El-Sayyad GS, Ashour A, El-Batal AI, Abd-Elmonem MS, Hendawy HA, Abdel-Khalek E, Labib S, Abdeltwab E, El-Okr M (2018) Synthesis and characterization of metals-substituted cobalt ferrite [Co (1-x)] MxFe2O4;(M=Zn, Cu, Mn; x = 0, 05)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater Sci Eng 92:644–656CrossRefGoogle Scholar
  24. 24.
    Ashour A, El-Batal AI, Maksoud MA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr M (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 40:141–151CrossRefGoogle Scholar
  25. 25.
    Maksoud MA, El-Sayyad GS, Ashour A, El-Batal AI, Elsayed MA, Gobara M, El-Khawaga AM, Abdel-Khalek E, El-Okr M (2019) Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathog 127:144–158CrossRefGoogle Scholar
  26. 26.
    Ramakrishna K, Srinivas C, Meena S, Tirupanyam B, Bhatt P, Yusuf S, Prajapat C, Potukuchi D, Sastry D (2017) Investigation of cation distribution and magnetocrystalline anisotropy of NixCu 0.1 Zn 0.9−xFe2O4 nanoferrites: role of constant mole percent of Cu 2+ dopant in place of Zn2. Ceram Int 43(11):7984–7991CrossRefGoogle Scholar
  27. 27.
    Abbas MK, Khan MA, Mushtaq F, Warsi MF, Sher M, Shakir I, Aboud MFA (2017) Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram Int 43(7):5524–5533CrossRefGoogle Scholar
  28. 28.
    Humbe AV, Nawle AC, Shinde A, Jadhav K (2017) Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J Alloy Compd 691:343–354CrossRefGoogle Scholar
  29. 29.
    Hashim M, Shirsath SE, Kumar S, Kumar R, Roy AS, Shah J, Kotnala R (2013) Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J Alloy Compd 549:348–357CrossRefGoogle Scholar
  30. 30.
    Angadi VJ, Rudraswamy B, Sadhana K, Murthy SR, Praveena K (2016) Effect of Sm3+ –Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J Alloy Compd 656:5–12CrossRefGoogle Scholar
  31. 31.
    Reheem AA, Atta A, Maksoud MA (2016) Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat Phys Chem 127:269–275CrossRefGoogle Scholar
  32. 32.
    Amer M, Meaz T, Hashhash A, Attalah S, Ghoneim A (2015) Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater Chem Phys 162:442–451CrossRefGoogle Scholar
  33. 33.
    Kumar ER, Reddy PSP, Devi GS, Sathiyaraj S (2016) Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles. J Magn Magn Mater 398:281–288CrossRefGoogle Scholar
  34. 34.
    Rahman MT, Vargas M, Ramana C (2014) Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J Alloy Compd 617:547–562CrossRefGoogle Scholar
  35. 35.
    Amer M, Matsuda A, Kawamura G, El-Shater R, Meaz T, Fakhry F (2017) Characterization and structural and magnetic studies of as-synthesized Fe2+CrxFe (2−x) O4 nanoparticles. J Magn Magn Mater 439:373–383CrossRefGoogle Scholar
  36. 36.
    Amer M, Meaz T, Mostafa A, El-Ghazally H (2013) Structural and physical properties of the nano-crystalline Al-substituted Cr–Cu ferrite. J Magn Magn Mater 343:286–292CrossRefGoogle Scholar
  37. 37.
    Kadam RH, Alone ST, Mane ML, Biradar AR, Shirsath SE (2014) Phase evaluation of Li+ substituted CoFe2O4 nanoparticles, their characterizations and magnetic properties. J Magn Magn Mater 355:70–75CrossRefGoogle Scholar
  38. 38.
    Ditta A, Khan MA, Junaid M, Khalil RA, Warsi MF (2017) Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0. 4Co0. 6Fe2O4) ferrites. Phys B 507:27–34CrossRefGoogle Scholar
  39. 39.
    Singhal S, Singh J, Barthwal S, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co 1−xNixFe2O4). J Solid State Chem 178(10):3183–3189CrossRefGoogle Scholar
  40. 40.
    Belavi P, Chavan G, Naik L, Somashekar R, Kotnala R (2012) Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater Chem Phys 132(1):138–144CrossRefGoogle Scholar
  41. 41.
    Mustafa G, Islam M, Zhang W, Jamil Y, Anwar AW, Hussain M, Ahmad M (2015) Investigation of structural and magnetic properties of Ce 3+-substituted nanosized Co–Cr ferrites for a variety of applications. J Alloy Compd 618:428–436CrossRefGoogle Scholar
  42. 42.
    Al-Ghamdi AA, Al-Hazmi FS, Memesh LS, Shokr F, Bronstein LM (2017) Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1− xZnxFe2O4 spinel ferrites. Ceram Int 43(8):6192–6200CrossRefGoogle Scholar
  43. 43.
    Sharma R, Thakur P, Kumar M, Thakur N, Negi N, Sharma P, Sharma V (2016) Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J Alloy Compd 684:569–581CrossRefGoogle Scholar
  44. 44.
    Amer M, Matsuda A, Kawamura G, El-Shater R, Meaz T, Fakhry F (2018) Structural, magnetic, vibrational and optical studies of structure transformed spinel Fe2+-Cr nano-ferrites by sintering process. J Alloy Compd 735:975–985CrossRefGoogle Scholar
  45. 45.
    El-Ghandour A, Awed A, Maksoud MA, Nasher M (2019) 1, 2-Dihydroxyanthraquinone: synthesis, and induced changes in the structural and optical properties of the nanostructured thin films due to γ-irradiation. Spectrochim Acta Part A 206:466–473CrossRefGoogle Scholar
  46. 46.
    Motavallian P, Abasht B, Abdollah-Pour H (2018) Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol–gel based Pechini method. J Magn Magn Mater 451:577–586CrossRefGoogle Scholar
  47. 47.
    Abdallah H, Moyo T, Msomi J (2012) The effect of annealing temperature on the magnetic properties of MnxCo 1−x Fe2O4 ferrites nanoparticles. J Supercond Nov Magn 25(8):2625–2630CrossRefGoogle Scholar
  48. 48.
    Sharifi I, Shokrollahi H (2013) Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation. J Magn Magn Mater 334:36–40CrossRefGoogle Scholar
  49. 49.
    Ajroudi L, Mliki N, Bessais L, Madigou V, Villain S, Leroux C (2014) Magnetic, electric and thermal properties of cobalt ferrite nanoparticles. Mater Res Bull 59:49–58CrossRefGoogle Scholar
  50. 50.
    Flaifel MH, Ahmad SH, Abdullah MH, Rasid R, Shaari AH, El-Saleh AA, Appadu S (2014) Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles. Compos Sci Technol 96:103–108CrossRefGoogle Scholar
  51. 51.
    Reddy CV, Byon C, Narendra B, Baskar D, Srinivas G, Shim J, Vattikuti SP (2015) Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles. Superlattices Microstruct 82:165–173CrossRefGoogle Scholar
  52. 52.
    Ateia EE, Mohamed AT (2017) Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method. J Magn Magn Mater 426:217–224CrossRefGoogle Scholar
  53. 53.
    Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68CrossRefGoogle Scholar
  54. 54.
    Ragab H, El-Kader MA (2013) Optical and thermal studies of starch/methylcellulose blends. Phys Scr 87(2):025602CrossRefGoogle Scholar
  55. 55.
    Janković B, Stopić S, Güven A, Friedrich B (2014) Kinetic modeling of thermal decomposition of zinc ferrite from neutral leach residues based on stochastic geometric model. J Magn Magn Mater 358:105–118CrossRefGoogle Scholar
  56. 56.
    Ghodake U, Kambale RC, Suryavanshi S (2017) Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceram Int 43(1):1129–1134CrossRefGoogle Scholar
  57. 57.
    Arshad M, Maqsood A, Gul I, Anis-Ur-Rehman M (2017) Fabrication, electrical and dielectric characterization of Cd-Ni nanoferrites. Mater Res Bull 87:177–185CrossRefGoogle Scholar
  58. 58.
    Maurya J, Bhoraskar S, Mathe V (2014) Effect of manganese substitution on magnetoimpedance and magnetostriction of cobalt ferrites. Phys B 436:220–226CrossRefGoogle Scholar
  59. 59.
    Sharifi I, Shokrollahi H (2012) Nanostructural, magnetic and Mössbauer studies of nanosized Co1−xZnxFe2O4 synthesized by co-precipitation. J Magn Magn Mater 324(15):2397–2403CrossRefGoogle Scholar
  60. 60.
    Tsay C-Y, Lin Y-H, Jen S-U (2015) Magnetic, magnetostrictive, and AC impedance properties of manganese substituted cobalt ferrites. Ceram Int 41(4):5531–5536CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT)Atomic Energy AuthorityCairoEgypt
  2. 2.Center of Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  3. 3.Physics Department, Faculty of ScienceDamietta UniversityDamiettaEgypt
  4. 4.Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT)Atomic Energy AuthorityCairoEgypt
  5. 5.Chemical Engineering Department, Military Technical CollegeEgyptian Armed ForcesCairoEgypt
  6. 6.Physics Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations