Synthesis of aluminophosphate xerogels by non-hydrolytic sol–gel condensation of EtAlCl2 with trialkylphosphates

  • Jan Podhorsky
  • Jan Chyba
  • Jiri PinkasEmail author
  • Zdenek MoravecEmail author
Original Paper: Sol–gel, hybrids and solution chemistries


We have investigated the preparation of high-surface-area mesoporous aluminophosphates by non-hydrolytic sol–gel method based on reactions of EtAlCl2 with trialkylesters of phosphoric acid (OP(OR)3, R = Me, Et, iPr, nBu, in dry organic solvents. The condensations proceed by alkylchloride elimination. Various reaction and calcination conditions were examined. Porosity is obtained after calcination by removal of organic residual groups. This thermal processing at 300 °C of as-synthesized precursor gels leads to amorphous aluminophosphate xerogels with surface areas of 400–500 m2 g–1 provided by small mesopores (2–8 nm). Changes in the coordination environment of aluminium from six- to four-coordinate are evidenced by shift of 27Al MAS NMR resonances.


  • Dichloroethylalane reacts with trialkylphosphates by alkylchloride elimination.

  • Aluminophosphate gels are obtained from the non-hydrolytic sol-gel technique.

  • Thermal processing at 300 °C leads to amorphous xerogels with surface areas of 400–500 m2 g–1.

  • Porosity is composed of small mesopores (2–8 nm).

  • Templating with Pluronic P123 significantly improves pore size distribution.


Mesoporous xerogels Aluminium phosphate Non-hydrolytic synthesis Sol–gel processing Alkylhalide elimination mechanism 



This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project Mobility FRANCE 7AMB17FR050 and CEITEC 2020 (LQ1601). ZM thanks to Postdoc II CZ.1.07/2.3.00/30.0037 for financial assistance. Authors thank to L. Simonikova and Dr. K. Novotny for ICP-OES analyses, T. Samoril for TEM analyses, Dr. P. Roupcova for XRD and Dr. P. Bezdicka for HT XRD measurements and M. Babiak for the single-crystal X-ray diffraction analyses. CIISB research infrastructure project LM2015043 funded by the MEYS CR is gratefully acknowledged for the financial support of the measurements at the CEITEC MU CF X-ray Diffraction and Bio-SAXS, the CF Cryo-electron Microscopy and Tomography.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_4953_MOESM1_ESM.docx (1.8 mb)
Supplementary Information.


  1. 1.
    Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147. CrossRefGoogle Scholar
  2. 2.
    Bennett JM, Cohen JM, Artioli G, Pluth JJ, Smith JV (1985) Crystal Structure of AlPO4-21, a Framework aluminophosphate containing tetrahedral phosphorus and both tetrahedral and trigonal-bipyramidal aluminum in 3-, 4-, 5-, and 8-rings. Inorg Chem 24:188–193.‎ CrossRefGoogle Scholar
  3. 3.
    Kirchner RM, Bennett JM (1994) The structure of calcined AlPO4-41: A new framework topology containing 10-ring pores. Zeolites 14:523–528. Scholar
  4. 4.
    Zahendi-Niaki MH, Joshi PN, Kaliaguine J (1996) Synthesis and characterization of AlPO-36, the missing end-member of ATS structure. Chem Commun 1373–1374
  5. 5.
    Naydenov V, Tosheva V, Antzutkin AN, Sterte J (2005) Meso/macroporous AlPO-5 spherical macrostructures tailored by resin templating. Micro Mesopor Mat 78:181–188. CrossRefGoogle Scholar
  6. 6.
    Middelkoop V, Jacques SDM, O´Brien MG, Beale AM, Barnes P (2008) Hydrothermal/autoclave synthesis of AlPO-5: a prototype space/time study of crystallisation gradients. J Mater Sci 43:2222–2228. Scholar
  7. 7.
    Vaughan DEW, Yennawar HP, Perrotta AJ (2006) Synthesis and structure of an aluminophosphate built from 3-rings. Chem Mater 18:3611–3615. CrossRefGoogle Scholar
  8. 8.
    Afeworki M, Dorset DL, Kennedy GJ, Strohmaier KG (2006) Synthesis and characterization of a new microporous material. 1. structure of aluminophosphate EMM-3. Chem Mater 18:1697–1704. CrossRefGoogle Scholar
  9. 9.
    Chen B, Huang Y (2011) Formation of microporous material AlPO4-18 under dry-gel conversion conditions. Micro Mesopor Mat 143:14–21. CrossRefGoogle Scholar
  10. 10.
    Kodaira T, Nabata A, Ikeda T (2012) A new aluminophosphate phase, AlPO-NS, with a bellows-like morphology obtained from prolonged hydrothermal process or increased pH value of initial solution for synthesizing AlPO4-5. Micro Mesopor Mat 162:31–35. CrossRefGoogle Scholar
  11. 11.
    Flanigen EM, Lok BM, Patton RL, Wilson ST (1986) Aluminophosphate molecular sieves and the periodic table. Pure & Appl Chem 58:1351–1358. CrossRefGoogle Scholar
  12. 12.
    Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768. CrossRefGoogle Scholar
  13. 13.
    Richardson JW, Vogt ETC (1992) Structure determination and rietveld refinement of aluminophosphate molecular sieve AIPO4-8. Zeolites 12:13–19. Scholar
  14. 14.
    Deroche I, Gaberova L, Maurin G, Llewellyn P, Castro M, Wright P (2008) Adsorption of carbon dioxide in SAPO STA-7 and AlPO-18: Grand Canonical Monte Carlo simulations and microcalorimetry measurements. Adsorption 14:207–213. Scholar
  15. 15.
    Carreon ML, Li S, Carreon MA (2012) AlPO-18 membranes for CO2/CH4 separation. Chem Commun 48:2310–2312. CrossRefGoogle Scholar
  16. 16.
    Shutilov RA, Grenev IV, Kikhtyanin OV, Gavrilov VY (2012) Adsorption of molecular hydrogen on aluminophosphate zeolites at 77 K. Kinet Catal 53:137–144. CrossRefGoogle Scholar
  17. 17.
    Arieli D, Vaughan DEW, Strohmaier KG, Thomann H, Bernardo M, Goldfarb D (1999) Studies of Fe(III) incorporated into AlPO4-20 by X- and W-band EPR spectroscopies. Magn Reson Chem 37:43–54. 0749–1581/99/SI0043–12CrossRefGoogle Scholar
  18. 18.
    Frunza L, Pelgrims J, Leeman H, Van Der Voort P, Vansant EF, Schoonheydt RA, Weckhuysen BM (2001) Incorporation of transition metal ions in aluminophosphate molecular sieves with AST structure. J Phys Chem B 105:2677–2686. CrossRefGoogle Scholar
  19. 19.
    Zhao R, Wang Y, Guo Y, Guo Y, Liu X, Zhang Z, Wang Y, Zhan W, Lu G (2006) A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chem 8:459–466. CrossRefGoogle Scholar
  20. 20.
    Franklin IL, Beale AM, Sankar G (2003) On the activity, longevity and recyclability of Mn(II) and Co(II) substituted AlPO-18 catalysts for the conversion of methanol to light olefins. Catal Today 81:623–629. Scholar
  21. 21.
    Zhao X, Sun Z, Zhu Z, Li A, Li G, Wang X (2013) Higher alcohol synthesis over Rh catalysts: conditioning of Rh/N-CNTs by Co and Mn entrapped in the support. Catal Lett 143:657–665. Scholar
  22. 22.
    Raboin L, Yano J, Tilley D (2012) Epoxidation catalysts derived from introduction of titanium centers onto the surface of mesoporous aluminophosphate: Comparisons with analogous catalysts based on mesoporous silica. J Catal 285:168–176. CrossRefGoogle Scholar
  23. 23.
    Danjo Y, Kikuchi I, Ino Y, Ohshima M, Kurokawa H, Miura H (2012) Support effect of Pd/AlPO4 catalyst in hydrogen storage of organic hydride method in the presence of CO. Reac Kinet Mech. Cat 105:381–389. Scholar
  24. 24.
    Lertjiamratn K, Praserthdam P, Arai H, Panpranot J (2010) Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether. Appl Catal A 2010 378:119–123. CrossRefGoogle Scholar
  25. 25.
    Yuan H, Liu X, Ren J, Shen L (2013) Surface acidity of aluminum phosphate and its catalytic performance in benzene alkylation with long chain olefin. Chin J Chem Eng 21:627–632. Scholar
  26. 26.
    Fitzgerald JJ, Piedra G, Dec SF, Seger M, Maciel GE (1997) Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1H and 27Al NMR. J Am Chem Soc 119:7832–7842. CrossRefGoogle Scholar
  27. 27.
    Pinkas J, Wessel H, Yang Y, Montero ML, Noltemeyer M, Fröba M, Roesky HW (1998) Reactions of phosphoric acid triesters with aluminum and gallium amides. Inorg Chem 1998 37:2450–2457. Google Scholar
  28. 28.
    Mason MR, Matthews RM, Mashuta MS, Richardson JF (1996) Organic-soluble cyclic and cage alkylaluminophosphates: X-ray crystal structure of [(tBu)2Al(μ2-O)2P(OSiMe3)2]2. Inorg Chem 35:5756–5757. CrossRefGoogle Scholar
  29. 29.
    Corriu RJP, Leclercq D, Lefévre P, Mutin PH, Vioux A (1992) Preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process. J Mater Chem 2:673–674. CrossRefGoogle Scholar
  30. 30.
    Andrianainarivelo M, Corriu R, Leclercq D, Mutin PH, Vioux A (1996) Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a non-hydrolytic sol–gel route. J Mater Chem 6:1665–1671. CrossRefGoogle Scholar
  31. 31.
    Aboulaich A, Boury B, Mutin PH (2010) Reactive and organosoluble anatase nanoparticles by a surfactant-free nonhydrolytic synthesis. Chem Mater 22:4519–4521. CrossRefGoogle Scholar
  32. 32.
    Aboulaich A, Boury B, Mutin PH (2011) Reactive and organosoluble SnO2 nanoparticles by a surfactant‐free non‐hydrolytic sol–gel route. Eur J Inorg Chem 3644–3649.
  33. 33.
    Bouchmella K, Mutin PH, Stoyanova M, Poleunis C, Eloy P, Rodemerck U, Gaigneaux EM, Debecker DP (2013) Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. J Catal 301:233–241. CrossRefGoogle Scholar
  34. 34.
    Moravec Z, Sluka R, Necas M, Jancik V, Pinkas J (2009) A structurally diverse series of aluminum chloride alkoxides [ClxAl(μ-OR)y]n (R=nBu, cHex, Ph, 2,4-tBu2C6H3). Inorg Chem 48:8106–8114. CrossRefGoogle Scholar
  35. 35.
    Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96. ISSN 1945-3027Google Scholar
  36. 36.
    Pinkas J, Chakraborty D, Yang Y, Murugavel R, Noltemeyer M, Roesky HW (1999) Reactions of trialkyl phosphates with trialkyls of aluminum and gallium: New route to alumino- and gallophosphate compounds via dealkylsilylation. Organometallics 18:523–528. CrossRefGoogle Scholar
  37. 37.
    Daasch LW, Smith DC (1951) Infrared spectra of phosphorus compounds. Anal Chem 23:853–868. CrossRefGoogle Scholar
  38. 38.
    Corbridge DEC (1969) In: Grayson M, Griffith EJ (ed) Phosphorus Compounds, John Wiley, New YorkGoogle Scholar
  39. 39.
    Li HX, Davis ME (1993) Further studies on aluminophosphate molecular sieves. Part 1.—AlPO4-H2: a hydrated aluminophosphate molecular sieve. J Chem Soc Faraday Trans 89:951–956. CrossRefGoogle Scholar
  40. 40.
    George L, Viswanatham KS, Singh S (1997) Ab initio study of trimethyl phosphate: conformational analysis, dipole moments, vibrational frequencies, and barriers for conformer interconversion. J Phys Chem 101:2459–2464. CrossRefGoogle Scholar
  41. 41.
    Jelinek R, Chmelka BF, Wu Y, Grandinetti PJ, Pines A, Barrie PJ, Klinowski J (1991) Study of the aluminophosphates AlPO4-21 and A1PO4-25 by 27Al Double-Rotation NMR. J Am Chem Soc 113:4097–4101. 0002–7863/91/1513–4097CrossRefGoogle Scholar
  42. 42.
    Blackwell CS, Patton RL (1988) Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. J Phys Chem 92:3969–3970. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Masaryk University, CEITEC MUBrnoCzech Republic

Personalised recommendations