Advertisement

One-step novel synthesis of CoFe2O4/graphene composites for organic dye removal

  • M. A. GabalEmail author
  • K. M. Abou Zeid
  • A. A. El-Gendy
  • M. S. El-Shall
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • 40 Downloads

Abstract

The present study was adopted for synthesis of CoFe2O4/graphene nanocomposites via facile, environment friendly and novel in-situ reduction-auto-combustion sucrose route. The graphene-based materials as well as the obtained nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis-thermogravimetry (DTA-TG) and vibrating sample magnetometry (VSM) measurements. These measurements confirmed the formation of densely distributed CoFe2O4 nanoparticles on graphene nanosheets when the reduction of graphene oxide (GO) component was carried out through reflux. On the other hand, when the process was carried out without reflux, the in-situ reduction of GO during ferrite auto-combustion resulted in the formation of uniformly distributed CoFe2O4 nanoparticles on reduced graphene oxide (rGO) nanosheets. The changes in the thermal stability of the prepared graphene and their ferrite nanoncomposites was discussed in the view of exposed surface area and ferrite’s agglomeration phenomena. The obtained nanocomposites were examined for the adsorption/removal of toxic malachite green (MG) dye from aqueous media depending on their magnetic sensitivity besides their porous surface morphology.

Schematic illustration for the formation of CoFe2O4/graphene hetero-architecture.

Highlights

  • CoFe2O4/Graphene was synthesized via novel reduction-auto-combustion sucrose route.

  • On reflux, CoFe2O4 nanoparticles densely anchored on graphene nanosheets were obtained.

  • Without reflux, uniformly distributed CoFe2O4 nanoparticles on rGO nanosheets were obtained.

  • The nanocomposites were examined for adsorption/removal of MG dye from aqueous media.

Keywords

CoFe2O4 graphene reflux sucrose auto-combustion adsorption/removal 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Goldman A (2006) Modern ferrite technology, 2nd edition. Springer, New York, NYGoogle Scholar
  2. 2.
    Kashevsky BE, Agabekov VE, Kashevsky SB, Kekalo KA, Manina EY, Prokhorov IV, Ulashchik VS (2008) Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia. Particuology 6:322–333CrossRefGoogle Scholar
  3. 3.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  4. 4.
    Hummers SW, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  5. 5.
    Lingamdinne LP, Choi Y, Kim Yang I, Koduru Jr J, Chang Y (2017) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156CrossRefGoogle Scholar
  6. 6.
    Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346CrossRefGoogle Scholar
  7. 7.
    Lu K, Zhao G, Wang X (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234CrossRefGoogle Scholar
  8. 8.
    Li N, Zheng M, Chang X, Ji G, Lu H, Xue L, Pan L, Cao J (2011) Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Sol State Chem 184:953–958CrossRefGoogle Scholar
  9. 9.
    Fu Y, Chen H, Sun X, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ 111–112:280–287CrossRefGoogle Scholar
  10. 10.
    Farghali AA, Bahgat M, El Rouby WMA, Khedr MH (2013) Preparation, decoration and characterization of graphene sheets for methyl green adsorption. J Alloy Compd 555:193–200CrossRefGoogle Scholar
  11. 11.
    Fu M, Jiao Q, Zhao Y (2013) In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Mater Charact 86:303–315CrossRefGoogle Scholar
  12. 12.
    Stefanescu M, Bozdog M, Muntean C, Stefanescu O, Vlase T (2015) Synthesis and magnetic properties of Co1-xZnxFe2O4 (x=0-1) nano- powders by thermal decomposition of Co(II), Zn(II) and Fe(III) carboxylates. J Magn Magn Mater 393:92–98CrossRefGoogle Scholar
  13. 13.
    Slatineanu T, Iordan AR, Oancea V, Palamaru MN, Dumitru I, Constantin CP, Caltun OF (2013) Magnetic and dielectric properties of Co–Zn ferrite. Mater Sci Eng B 178:1040–1047CrossRefGoogle Scholar
  14. 14.
    Sundararajan M, Kennedy LJ, Vijaya JJ, Aruldoss U (2015) Microwave combustion synthesis of Co1-xZnxFe2O4 (0≤x≤0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 140:421–430CrossRefGoogle Scholar
  15. 15.
    Lopez J, Gonzalez-Bahamo LF, Prado J, Caicedo JC, Zambrano G, Gomez ME, Esteve J, Prieto P (2012) Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater 324:394–402CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Stangle GC (1994) Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J Mater Res 9:1997–2004CrossRefGoogle Scholar
  17. 17.
    Kumar S, Singh V, Aggarwal S, Mandal UK, Kotnala RK (2012) Monodisperse Co, Zn-Ferrite nanocrystals: controlled synthesis, characterization and magnetic properties. J Magn Magn Mater 324:3683–3689CrossRefGoogle Scholar
  18. 18.
    Hou C, Yu H, Zhang Q, Li Y, Wang H (2010) Preparation and magnetic property analysis of monodisperse Co–Zn ferrite nanospheres. J Alloy Compd 491:431–435CrossRefGoogle Scholar
  19. 19.
    Gozuak F, Koseoglu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321:2170–2177CrossRefGoogle Scholar
  20. 20.
    Gabal MA, Kosa S, El Muttairi TS (2014) Magnetic dilution effect of nano-crystalline NiFe2O4 synthesized via sucrose-assisted combustion route. Ceram Int 40:675–681CrossRefGoogle Scholar
  21. 21.
    Gabal MA, Al-Juaid AA, Al-Rashed SM, Hussein MA, Al-Marzouki F (2017) Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J Magn Magn Mater 426:670–679CrossRefGoogle Scholar
  22. 22.
    Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA (2017) Synthesis and characterization of nano-sized CoFe2O4 via facile methods: a comparative study. Mater Res Bull 89:68–78CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  24. 24.
    Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29CrossRefGoogle Scholar
  25. 25.
    Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33CrossRefGoogle Scholar
  26. 26.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  27. 27.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  28. 28.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398CrossRefGoogle Scholar
  29. 29.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Binh S, Nguyen T, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  30. 30.
    Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 12:1–12CrossRefGoogle Scholar
  31. 31.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114CrossRefGoogle Scholar
  32. 32.
    Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437CrossRefGoogle Scholar
  33. 33.
    Fan X, Shi X, Wang J, Shi Y, Wang J, Xu L, Gou L, Li D (2013) Sucrose assisted hydrothermal synthesis of SnO2/graphene nanocomposites with improved lithium storage properties. J Sol State Electrochem 17:201–208CrossRefGoogle Scholar
  34. 34.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace G (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  35. 35.
    Fu Y, Chen Q, He M, Wan Y, Sun X, Xia H, Wang X (2012) Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind Eng Chem Res 51:11700–11709CrossRefGoogle Scholar
  36. 36.
    Fei P, Wang Q, Zhong M, Su B (2016) Preparation and adsorption properties of enhanced magnetic zinc ferrite-reduced graphene oxide nanocomposites via a facile one-pot solvothermal method. J Alloy Compd 685:411–417CrossRefGoogle Scholar
  37. 37.
    Hassan HMA, Abdelsayed V, Khedr AS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837CrossRefGoogle Scholar
  38. 38.
    Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58CrossRefGoogle Scholar
  39. 39.
    Varshney D, Verma K, Kumar A (2011) Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A=Zn, Mg and x=0.0, 0.5) ferrites. J Mol Struct 1006:447–452CrossRefGoogle Scholar
  40. 40.
    Rani R, Sharma SK, Pirota KR, Knobel M, Thakur S, Singh M (2012) Effect of zinc concentration on the magnetic properties of cobalt–zinc nanoferrite. Ceram Int 38:2389–2394CrossRefGoogle Scholar
  41. 41.
    Gyergyek S, Makovec D, Kodre A, Arcon I, Jagodic M, Drofenik M (2010) Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles J Nanopart Res 12:1263–1273CrossRefGoogle Scholar
  42. 42.
    Baba AA, Adekola AF, Bale RB (2009) Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries. J Hazard Mater 171:838–844CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Gabal
    • 1
    • 2
    Email author
  • K. M. Abou Zeid
    • 2
  • A. A. El-Gendy
    • 3
  • M. S. El-Shall
    • 2
  1. 1.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of PhysicsUniversity of Texas El PasoEl PasoUSA

Personalised recommendations