Comparative study on blue-turquoise silicate apatite phosphors prepared via different synthesis routes

  • I. Perhaita
  • L. E. MuresanEmail author
  • D. T. Silipas
  • L. Barbu Tudoran
Original Paper: Sol–gel and hybrid materials for optical, photonic, and optoelectronic applications


Different types of gel precursors were obtained via microwave-assisted precipitation, gel-combustion, sol–gel, and Pechini methods in order to prepare Ca2Y7.76Ce0.12Tb0.12(SiO4)6O2 phosphors with apatite structure. The processes involved during the thermal treatment of precursors were revealed by TGA– FT-IR coupling. ICP-OES reveals that the incorporation degree of dopants (Ce3+, Tb3+) in silicate lattice are close to theoretical values while Ca2+ and Y3+ values shows differences depending on the synthesis route. The phosphors composition, morphology, structure, and optical characteristics are revealed by SEM, XRD, FTIR, and luminescent investigations. Pure hexagonal apatite with crystallite size of 76.5 nm was identified in sample prepared by gel-combustion, while cubic-Y2O3 and monoclinic-Y2SiO5, as secondary phases, were found in precipitated samples. The purity phase was enhanced by increasing the TEOS amount during precipitation. As a result of the Ce3+ incorporation into different symmetry sites, the excitation spectra are dominated either by 321 or 360 nm band. Turquoise emission of apatites is shifted toward blue region by increasing the excitation wavelength from 231 to 360 nm.


  • Ce–Tb-doped silicate apatite phosphors were prepared using four different synthesis routes.

  • The thermal decomposition of gel precursors was evaluated based on TG-FTIR.

  • Pure apatite with crystallites size of 76.5 nm was obtained using gel-combustion.

  • Structure and luminescence of apatites was improved using 50 mol% excess of TEOS in precipitation.

  • Excitation spectra are dominated by 321 or 360 nm band depending on phase purity.


Silicate apatite Luminescence Wet chemical synthesis Phosphors 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This study is part of the research that will lead to the elaboration of a doctoral thesis. Authors are grateful to the Babes Bolyai University for their financial support to undertake this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sun Z, Wang M, Yang Z, Liu K, Zhu F (2016) Crystal structure and luminescence properties of Bi3+ activated Ca2Y8(SiO4)6O2 phosphors under near UV excitation. J Solid State Chem 239:165–170CrossRefGoogle Scholar
  2. 2.
    Sokolnicki J, Zych E (2015) Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2:Eu2+, Eu3+ phosphor for white LEDs. J Lumin 158:65–69CrossRefGoogle Scholar
  3. 3.
    Bian L, Wang T, Liu S, Yang SS, Liu QL (2015) The crystal structure and luminescence of phosphor Ba9Sc2Si6O24:Eu2+, Mn2+ for white light emitting diode. Mater Res Bull 64:279–282CrossRefGoogle Scholar
  4. 4.
    Khaidukov NM, Kirm M, Feldbach E, Magi H, Nagirnyi V, Toldsepp E, Vielhauer S, Justel T, Jansen T, Makhov VN (2017) Luminescence properties of silicate apatite phosphors M2La8Si6O26:Eu (M=Mg, Ca, Sr). J Lumin 191:51–55CrossRefGoogle Scholar
  5. 5.
    Jansen T, Jüstel T, Kirm M, Mägi H, Nagirnyi V, Toldsepp E, Vielhauer S, Khaidukov M, Makhov VN (2017) Site selective, time and temperature dependent spectroscopy of Eu3+ doped apatites (Mg,Ca,Sr)2Y8Si6O26. J Lumin 186:205–211CrossRefGoogle Scholar
  6. 6.
    Wang L, Kee Moon B, Choi BC, Kim JH, Shi J, Jeong JH (2016) Photoluminescent properties and site occupation preference in Bi3+, Eu3+ doped CaY4(SiO4)3O phosphor. Ceram Int 42:12971–12980CrossRefGoogle Scholar
  7. 7.
    Liu H, Gu W, Hai Y, Zhang L, Liao L, Mei L (2015) Facile combustion synthesis and photoluminescence properties of Ce3+ doped Sr2La8(SiO4)6O2 phosphors. Opt Mater 42:553–555CrossRefGoogle Scholar
  8. 8.
    Xinyu YE, Fang Y, Liao C, Yang Y, Deng G, Zhuang W (2010) Re-determination of the crystal structure of Ca2Y8Si6O26 and study on the luminescent properties of Ca2Y8Si6O26:Tb3+. J Rare Earths 28:269–271CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Mei L, Liu H, Yang D, Liao L, Huang Z (2017) Dysprosium doped novel apatite-type white-emitting phosphor Ca9La(PO4)5(GeO4)F2 with satisfactory thermal properties for n-UV w-LEDs. Dyes Pigm 139:180–186CrossRefGoogle Scholar
  10. 10.
    Han X, Lin J,Li, Qi X, Li M, Wang X (2013) Photoluminescent properties of Ca2RE8(SiO4)6O2:A (RE=Y, Gd; A=Pb2+, Mn2+) phosphor films prepared by sol-gel process. J Rare Earths 26:443–445CrossRefGoogle Scholar
  11. 11.
    Pavitra E, Seeta Rama Raju G, Jae Su Yu (2013) White light emission from Eu3+ co-activated Ca2Gd8Si6O26:Dy3+ nanophosphors by solvothermal synthesis. Ceram Int 39:6319–6324CrossRefGoogle Scholar
  12. 12.
    Chiriu D, Stagi L, Carbonaro CM, Corpino R, Ricci PC (2016) Energy transfer mechanism between Ce and Tb ions in sol-gel synthesized YSO crystals. Mater Chem Phys 171:201–207CrossRefGoogle Scholar
  13. 13.
    Wang W, Li J, Teng X, Chen Q (2018) Luminescence properties of Y3+ stabilized Gd3Al5O12:Tb3+/Ce3+ phosphors with yellow light-emitting for warm white LEDs. J Lumin 202:176–185CrossRefGoogle Scholar
  14. 14.
    Yang Z, Xu D, Sun J, Du J, Gao X (2016) Luminescence properties and energy transfer investigations of Sr3Lu(PO4)3:Ce3+,Tb3+ phosphors. Mater Sci Eng B 211:13–19CrossRefGoogle Scholar
  15. 15.
    Guo Q, Liao L, Molokeev MS, Mei L, Liu H (2015) Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure. Mater Res Bull 72:245–251CrossRefGoogle Scholar
  16. 16.
    Guo Q, Liao L, Mei L, Liu H, Hai Y (2015) Color-tunable photoluminescence phosphors of Ce3+ and Tb3+ co-doped Sr2La8(SiO4)6O2 for UVw-LEDs. J Solid State Chem 225:149–154CrossRefGoogle Scholar
  17. 17.
    Zhang W, Huang Y, Seo HJ (2013) Luminescence properties and efficient energy transfer in Ce3+ and Tb3+ co-doped Mg2La3[SiO4]2[PO4]O phosphor. Ceram Int 39:4313–4319CrossRefGoogle Scholar
  18. 18.
    Xiang J, Liu ZG, Ouyang JH, Yan FY (2012) Synthesis, structure and electrical properties of rare-earth doped apatite-type lanthanum silicates. Electrochim Acta 65:251–256CrossRefGoogle Scholar
  19. 19.
    Liu H, Zhang Y, Liao L, Xia Z (2014) Synthesis, structure and green luminescence evolution of apatite-type Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5:Eu2+,Tb3+ phosphors. J Lumin 156:49–54CrossRefGoogle Scholar
  20. 20.
    Zuev MG, Karpov AM, Shkvarin AS (2011) Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2:Eu polycrystals. J Solid State Chem 184:52–58CrossRefGoogle Scholar
  21. 21.
    Perhaita I, Muresan LE, Silipas DT, Borodi G, Karabulut Y, Garcia Guinea J, Canimoglu A, Ayvacikli M, Can N (2017) The role of calcination temperature on structural and luminescence behaviour of novel oxyapatite-based Ca2Y8(SiO4)6O2: Ce3+, Tb3+ phosphors. Appl Radiat Isot 130:188–197CrossRefGoogle Scholar
  22. 22.
    Yang T, Zhao H, Han J, Xu N, Shen Y, Du Z, Wang J (2014) Synthesis and densification of lanthanum silicate apatite electrolyte for intermediate temperature solid oxide fuel cell via co-precipitation method. J Eur Ceram Soc 34:1563–1569CrossRefGoogle Scholar
  23. 23.
    Kioupis D, Kakali G (2016) Structural and electrical characterization of Sr-and Al-doped apatite type lanthanum silicates prepared by the pechini method. Ceram Int 42:9640–9647CrossRefGoogle Scholar
  24. 24.
    Yamagata C, Elias DR, Paiva MRS, Misso AM, Mello Castanho SRH (2013) Facile preparation of apatite-type lanthanum silicate by a new water-based sol–gel process. Mater Res Bull 48:2227–2231CrossRefGoogle Scholar
  25. 25.
    Schubert U, Husing N (2000). Synthesis of inorganic materials. Wiley VCH, Verlag, Weinheim New York.Google Scholar
  26. 26.
    Celeriera S, Laberty-Roberta C, Ansarta F, Calmeta C, Stevens P (2005) Synthesis by sol–gel route of oxyapatite powders for dense ceramics: applications as electrolytes for solid oxide fuel cells. J Eur Ceram Soc 25:2665–2668CrossRefGoogle Scholar
  27. 27.
    Kharlamova T, Vodyankina O, Matveev A, Stathopoulos V, Ishchenkod A, Khabibulind D, Sadykovd V (2015) The structure and texture genesis of apatite-type lanthanum silicates during their synthesis by co-precipitation. Ceram Int 41:13393–13408CrossRefGoogle Scholar
  28. 28.
    Ropp RC (2004). Studies in inorganic chemistry, vol. 21, Luminescence and the Solid State 21. Elsevier, Warren, USAGoogle Scholar
  29. 29.
    Yao HC, Wang JS, Hu DG, Li JF, Lu XR, Li ZJ (2010) New approach to develop dense lanthanum silicate oxyapatite sintered ceramics with high conductivity. Solid State Ion 181:41–47CrossRefGoogle Scholar
  30. 30.
    Jo SH, Muralidharan P, Kim DK (2009) Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder. J Mater Res 24:237–244CrossRefGoogle Scholar
  31. 31.
    Ma Y, Moliere M, Yu Z, Fenineche N, Elkedim O (2017) Novel chemical reaction co-precipitation method for the synthesis of apatite-type lanthanum silicate as an electrolyte in SOFC. J Alloy Compd 723:418–424CrossRefGoogle Scholar
  32. 32.
    Muresan LE, Perhaita I, Prodan D, Borodi G (2018) Studies on terbium doped apatite phosphors prepared by precipitation under microwave conditions. J Alloy Compd 755:135–146CrossRefGoogle Scholar
  33. 33.
    Yan B, Huang H (2007) Sol–gel synthesis and luminescence of unexpected microrod crystalline Ca5La5(SiO4)3(PO4)3O2:Dy3+ phosphors employing different silicate sources. Opt Mater 29:1706–1709CrossRefGoogle Scholar
  34. 34.
    Rao GM, Hussain SK, Raju GSR, Subba Rao PSV, Yu JS (2016) Synthesis and characterizations of novel Sr2Gd8(SiO4)6O2:Eu3+ oxyapatite phosphors for solid-state lighting and display applications. J Alloy Compd 660:437–445CrossRefGoogle Scholar
  35. 35.
    Deganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: best parameters for better materials. Prog Cryst Growth Charact Mater 64:23–61CrossRefGoogle Scholar
  36. 36.
    Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of nanocrystaline oxide materials.. Woeld Scientific Publishing Co. Pte. Ltd., SingaporeCrossRefGoogle Scholar
  37. 37.
    Sarkisov PD, Orlova LA, Popovich NV, Anan’eva YuE (2007) Structure formation in production of yttrium sylicate materials by the sol-gel method. Glass Ceram 64:3–6CrossRefGoogle Scholar
  38. 38.
    Li J, Pan Y, Qiu F, Wu Y, Guo J (2008) Nanostructured Nd:YAG powders via gel combustion: the influence of citrate-to-nitrate ratio. Ceram Int 34:141–149CrossRefGoogle Scholar
  39. 39.
    Aric JA (2016) Infrared spectra of minerals and related inorganic materialsButterworths, LondonGoogle Scholar
  40. 40.
    Ivanov MG, Kynast U, Leznina M (2016) Eu3+ doped yttrium oxide nano-luminophores from laser synthesis. J Lumin 169:744–748CrossRefGoogle Scholar
  41. 41.
    Rubio F, Rubio J, Otelo JL (1998) A FT-IR study of the hydrolysis of thetraetilorthosilicate (TEOS). Spectrosc Lett 31:199–219CrossRefGoogle Scholar
  42. 42.
    Moeller T, Kremers HE (1945) The basicity of scandium, yttrium and the rare earth elements. Chem Rev 37:74–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Raluca Ripan Institute for Research in ChemistryBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj NapocaRomania
  3. 3.Electronic Microscopy CentreBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations