Journal of Sol-Gel Science and Technology

, Volume 89, Issue 2, pp 511–520 | Cite as

Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance

  • Dong Huang
  • Haixia LiuEmail author
  • Tianduo LiEmail author
  • Qingfen Niu
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


In this work, we were committed to building a nickel oxide (NiO) octahedron with skeleton crystal structure as a capacitor electrode for supercapacitance through a template-free and efficient one-step process. Initially, nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and anhydrous ethanol mixtures were used as a material. The final samples were prepared by calcining the precursor at different temperatures. The mechanism of crystal recrystallization at different temperatures during calcination was discussed. Generally speaking, in the process of rapid growth with only diffusion mechanism, crystal imperfections such as crystal plane depression and skeleton crystal will be formed. At the lower temperature calcination, small depressions are produced due to the effect of crystal face Ostwald ripening. At higher temperatures, the crystal edge growth rate is faster than the surface growth rate during Ostwald ripening and recrystallization, resulting in the formation of NiO octahedron with a large surface depression skeleton crystal structure. The electrochemical test results of the samples showed that the surface depression NiO octahedron has fine supercapacitive behaviors and specific capacitance values (640 F g−1) at the discharging current of 0.5 A g−1 in the 3 mol L−1 KOH electrolyte and maintain excellent cycling stability, remaining constant after 2000 cycles. Electrochemical impedance measurements confirmed the capacitance performance of NiO electrodes.

Skeleton crystal is a special form of crystal crystallization. Rock salt structure is an important part of the formation of skeleton crystal. The growth rate of the edge of the NiO crystal is higher than that of the crystal surface, and the (111) plane decreases or even disappears, eventually forming a skeleton crystal NiO octahedral structure.


  • A special morphology of NiO skeleton crystal octahedron was synthesized by a one-step template-free method.

  • The formation mechanism of surface depression NiO octahedron was explained based on the definition of skeleton crystal.

  • The effect of surface depression on electrochemical performance is explained.


Electrochemical supercapacitors NiO octahedron Skeleton crystal Depression 



This study was supported by the financial support of the Key Research Project of Shandong Province (No. 2017GGX40121), the National Natural Science Foundation of China (Nos. 51402157 and 51602164), and the Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4908_MOESM1_ESM.docx (380 kb)
Supplementary information


  1. 1.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27CrossRefGoogle Scholar
  2. 2.
    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577CrossRefGoogle Scholar
  3. 3.
    Chen G, Guan H, Dong C, Wang Y (2017) Ionics 24:513–521Google Scholar
  4. 4.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690CrossRefGoogle Scholar
  5. 5.
    Inamdar AI, Kim YS, Pawar SM, Kim JH, Im H, Kim H (2011) J Power Sources 196:2393–2397CrossRefGoogle Scholar
  6. 6.
    Wu M, Gao J, Zhang S, Chen A (2006) J Porous Mater 13:407–412CrossRefGoogle Scholar
  7. 7.
    Dhole IA, Navale ST, Navale YH, Jadhav YM, Pawar CS, Suryavanshi SS, Patil VB (2017) J Mater Sci Mater Electron 28:10819–10829Google Scholar
  8. 8.
    Pang M, Yuan JI (2014) Solvothermal synthesis of CoO spheres and their excellent electrochemical performances in supercapacitors. In: Proceedings of the national energy storage science and technology conferenceGoogle Scholar
  9. 9.
    Liu X, Ji D, Li J, Chen L, Zhang D, Liu T, Zhang N, Ma R, Qiu G (2015) RSC Adv 5:41627–41630CrossRefGoogle Scholar
  10. 10.
    Ghodbane O, Pascal JL, Favier F (2009) ACS Appl Mater Interfaces 1:1130CrossRefGoogle Scholar
  11. 11.
    Yu P, Zhang X, Wang D, Wang L, Ma Y (2013) Cryst Growth Des 9:528–533CrossRefGoogle Scholar
  12. 12.
    Nam KW, Kim KB (2002) J Electrochem Soc 149:A346–A354CrossRefGoogle Scholar
  13. 13.
    Tiwari S, Rajeev K (2006) Thin Solid Films 505:113–117CrossRefGoogle Scholar
  14. 14.
    Nohman AKH, Mekhemer GAH, Tolba MA (2003) Bull Fac Sci Assuit Univ 32:1–11Google Scholar
  15. 15.
    Raza R, Liu Q, Nisar J, Wang X, Ma Y, Zhu B (2011) Electrochem Commun 13:917–920CrossRefGoogle Scholar
  16. 16.
    Predanocy M, Hotový I, Řehaček V (2017) Gas sensor based on sputtered NiO thin films. In: Proceedings of the international conference on advanced semiconductor devices & microsystemsGoogle Scholar
  17. 17.
    Fan X, Guan J, Li Z, Mou F, Tong G, Wang W (2010) J Mater Chem 20:1676–1682CrossRefGoogle Scholar
  18. 18.
    Chen J, Wu X, Liu Y, Gong Y, Wang P, Li W, Mo S, Tan Q, Chen Y (2017) Appl Surf Sci 425:461–469Google Scholar
  19. 19.
    Li Q, Huang G, Yin D, Wu Y, Wang L (2016) Part Part Syst Charact 33:764–770CrossRefGoogle Scholar
  20. 20.
    Chai H, Chen X, Jia D, Bao S, Zhou W (2012) Mater Res Bull 47:3947–3951CrossRefGoogle Scholar
  21. 21.
    Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) J Power Sources 264:161–167CrossRefGoogle Scholar
  22. 22.
    Vidhyadharan B, Zain NKM, Misnon II, Aziz RA, Ismail J, Yusoff MM, Jose R (2014) J Alloy Compd 610:143–150CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Liu H, Li H, Liu Y, Zhang H, Li T (2015) Appl Surf Sci 328:525–530CrossRefGoogle Scholar
  24. 24.
    Chen DP, Wang XL, Du Y, Ni S, Chen ZB, Liao X (2012) Cryst Growth Des 12:2842–2849CrossRefGoogle Scholar
  25. 25.
    Meher SK, Justin P, Rao GR (2010) Electrochim Acta 55:8388–8396CrossRefGoogle Scholar
  26. 26.
    Song X, Lian G (2008) J Am Ceram Soc 91:3465–3468CrossRefGoogle Scholar
  27. 27.
    And RN, Elsayed MA (2005) ChemInform 109:12663–12676Google Scholar
  28. 28.
    Zecchina A, Groppo E, Bordiga S (2010) Chemistry 13:2440–2460CrossRefGoogle Scholar
  29. 29.
    Liu B, Wei A, Zhang J, An L, Zhang Q, Yang H (2012) J Alloy Compd 544:55–61CrossRefGoogle Scholar
  30. 30.
    Yang ZK, Song LX, Xu RR, Teng Y, Xia J, Zhao L, Wang QS (2014) CrystEngComm 16:9083–9089CrossRefGoogle Scholar
  31. 31.
    Liu B, Yang H, Wei A, Zhao H, Ning L, Zhang C, Liu S (2015) Appl Catal B: Environ 172-173:165–173CrossRefGoogle Scholar
  32. 32.
    Tong G, Hu Q, Wu W, Li W, Qian H, Liang Y (2012) J Mater Chem 22:11754–17494Google Scholar
  33. 33.
    Gujar TP, Kim WY, Puspitasari I (2007) Int J Electrochem Sci 2:666–673Google Scholar
  34. 34.
    Qing X, Liu S, Huang K, Lv K, Yang Y, Lu Z, Fang D, Liang X (2011) Electrochim Acta 56:4985–4991CrossRefGoogle Scholar
  35. 35.
    Hu CC, Chang KH, Hsu TY (2008) J Electrochem Soc 155:196–200CrossRefGoogle Scholar
  36. 36.
    Srinivasan V, Weidner JW (2000) J Electrochem Soc 147:880–885CrossRefGoogle Scholar
  37. 37.
    Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett 9:1872CrossRefGoogle Scholar
  38. 38.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2010) Angew Chem 120:379–382CrossRefGoogle Scholar
  39. 39.
    Yuan C, Zhang X, Su L, Gao B, Shen L (2009) J Mater Chem 19:5772–5777CrossRefGoogle Scholar
  40. 40.
    Liu BH, Yu SH, Chen SF, Wu CY (2006) J Phys Chem B 110:4039–4046CrossRefGoogle Scholar
  41. 41.
    Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) J Am Chem Soc 131:697–703CrossRefGoogle Scholar
  42. 42.
    Xiong YJ, Wiley BJ, Xia Y (2010) Angew Chem 46:7157–7159Google Scholar
  43. 43.
    Jin W, Cai L, Pan Z, Miao Y (2000) J Inorg Mater 15:769–776Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of TechnologyJinanPR China

Personalised recommendations