Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 3, pp 713–721 | Cite as

Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics

  • S. Divya LakshmiEmail author
  • I. B. Shameem BanuEmail author
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • 91 Downloads

Abstract

A series of Yb and X co-doped BiFeO3 (X = Nb, Mn, Mo) and undoped BiFeO3 polycrystalline ceramics were prepared by sol-gel method. The X-ray diffraction pattern confirmed the rhombohedral perovskite structure for all the ceramics. Reitveld refinement results bring out the impact of doping on the structural distortion. The Transmission Electron Micrograph observation reveals the nanostructure of the doped samples. Well saturated ferromagnetic hysteresis curves were obtained for the doped samples in contrary to undoped BiFeO3 and this is attributed to the distortion of spin spiral structure. The doped ceramics exhibited improved ferroelectric parameters and very low leakage current density of the order of 10−9 to 10−7 A/cm2, which is remarkably lower than that of undoped BFO. Remarkable dielectric properties were exhibited for the doped samples. An abrupt noticeable enhancement of magetoelectric coupling for the doped samples in comparison with the undoped BiFeO3 has been demonstrated in our work.

The left figure depicts the ferromagnetic character and the right figure depicts the ferroelectric behavior of (Yb, Nb), (Yb, Mn) and (Yb, Mo) doped BiFeO3 multiferroic

Highlights

  • Novel (Yb, X) doped BFO (X = Nb, Mn, Mo) multiferroic materials were synthesized.

  • All the doped samples exhibit significantly enhanced magnetic, ferroelectric and dielectric properties.

  • Leakage current of the doped BFO is very low compared to that of undoped BFO.

  • Remarkably improved magnetoelectric coupling is shown by the doped samples.

Keywords

Multiferroic ceramics Co-doped BiFeO3 Magnetic-ferroelectric Magnetoelectric coupling Current leakage density 

Notes

Acknowledgements

The authors acknowledge the sophisticated analytical instrumentation facilities at the Indian Institute of Technology Madras for providing the facility of vibrating sample magnetometer. They also thank the sophisticated test and instrumentation centre, Cochin, for extending the TEM and HRTEM characterization. The authors thank Dr. M. S. Ramachander Rao, Department of Physics, Indian Institute of Technology Madras, for helping to characterize the electrical studies using Radiant Technology Pvt Ltd. The authors are extremely thankful to the Department of Science and Technology, India, for providing the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Nat Lond 426:55CrossRefGoogle Scholar
  2. 2.
    Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Nat Lond 429:392CrossRefGoogle Scholar
  3. 3.
    Spaldin NA, Feibig M (2005) Science 309:391CrossRefGoogle Scholar
  4. 4.
    Erenstein W, Mathur ND, Scott JF (2006) Nat Lond 442:759CrossRefGoogle Scholar
  5. 5.
    Feibig M, Lottermoser Th, Frohlich D, Goltsev AV, Pisarev RV (2002) Nat Lond 419:818CrossRefGoogle Scholar
  6. 6.
    Kubel F, Schmid H (1990) Acta Crystallogr B 46:698CrossRefGoogle Scholar
  7. 7.
    Fischer P, Polomska M, Sosnowska I, Szymanski M (1931) J Phys C 13:1980Google Scholar
  8. 8.
    Jiang Y-P, Tang X-G, Liu Q-X, Chen D-G, Ma C-B (2014) J Mater Sci Mater Electron 25:495–499CrossRefGoogle Scholar
  9. 9.
    Yuan GL, Or SW, Liu JM, Liu ZG (2006) Appl Phys Lett 89:052905CrossRefGoogle Scholar
  10. 10.
    Li Y, Fan Y, Zhang H, Teng H, Dong X, Liu H, Ge X, Li X, Chen W, Li X, Ge Z (2014) J Supercond Nov Magn 27:1239CrossRefGoogle Scholar
  11. 11.
    Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB, Pan XQ (2006) Appl Phys Lett 88:162901CrossRefGoogle Scholar
  12. 12.
    Ye W, Tan G, Dong G, Ren H, Xia A (2015) Ceram Int 41:4668CrossRefGoogle Scholar
  13. 13.
    Ablat A, Wu R, Mamat M, Li J, Muhemmed E, Si C, Wu R, Wang J, Qian H, Ibrahim K (2014) Ceram Int 40:14083CrossRefGoogle Scholar
  14. 14.
    Quan C, Ma Y, Han Y, Tang X, Lu M, Mao W, Zhang J, Yang J, Li X, Huang W (2015) J Alloy Compd 635:272–277Google Scholar
  15. 15.
    Hu Z, Li M, Yu Y, Liu J, Pei L, Wang J, Liu X, Yu B, Zhao X (2010) Solid State Commun 150:1088–1091CrossRefGoogle Scholar
  16. 16.
    Yan X, Tan G, Liu W, Ren H, Xia A (2015) Ceram Int 41:3202–3207CrossRefGoogle Scholar
  17. 17.
    Tang P, Kuang D, Yang S, Zhang Y (2016) J Alloy Compd 656:912–919CrossRefGoogle Scholar
  18. 18.
    Beniwal A, Bangruwa JS, Walia R, Verma V (2016) Ceram Int 42:10373–10379Google Scholar
  19. 19.
    Wang D, Wang M, Liu F, Cui Y, Zhao Q, Sun H, Jin H, Cao M (2015) Ceram Int 41:8768–8772CrossRefGoogle Scholar
  20. 20.
    Hernandez N, Gonzalez-Gonzalez VA, Dzul-Bautista IB, Gutierrez J, Barandiaran JM, Ruiz de Larramendi I, Cienfuegos-Pelaes RF, Ortiz- Mendez U (2015) J Alloy Compd 638:282–288Google Scholar
  21. 21.
    Arora M, Chauhan S, Sati PC, Kumar M, Chhoker S (2014) Ceram Int 40:13347–13356CrossRefGoogle Scholar
  22. 22.
    Wang T, Song SH, Wang XL et al. (2018) J Sol-Gel Sci Technol 85:356CrossRefGoogle Scholar
  23. 23.
    Priya S, Banu IBS, Anwar MS, Hussain S (2016) J Sol-Gel Sci Technol 80:579CrossRefGoogle Scholar
  24. 24.
    Priya S, Banu IBS, Anwar MS (2016) J Magn Magn Mater 401:333–338Google Scholar
  25. 25.
    Zheng Y, Tan G, Xia A, Ren H (2016) J Alloy Compd 684:438–444CrossRefGoogle Scholar
  26. 26.
    Ahmed MA, Mansour SF, Ei-Dek SI, Karamany MM (2016) J Rare Earths 34:495–506CrossRefGoogle Scholar
  27. 27.
    Vanga PR, Mangalaraja RV, Giridharan NV, Ashok M (2016) J Alloy Compd 684:55–61CrossRefGoogle Scholar
  28. 28.
    Chen L, He Y, Zhang J, Mao Z, Zhao Y-J, Chen X (2014) J Alloy Compd 604:327–330CrossRefGoogle Scholar
  29. 29.
    Xu J, Wang G, Wang H, Ding D, He Y (2009) Mater Lett 63:855CrossRefGoogle Scholar
  30. 30.
    Ederer C, Spaldin NA (2005) Phys Rev B 71:224103Google Scholar
  31. 31.
    Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjonovic D (2014) J Am Ceram Soc 97:1993Google Scholar
  32. 32.
    Wang Y, Zheng RY, Sim CH, Wang J (2009) J Appl Phys 105:016106CrossRefGoogle Scholar
  33. 33.
    Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Phys Rev B 69:212102CrossRefGoogle Scholar
  34. 34.
    Kumar A, Yadav KL (2013) J Alloy Compd 554:138CrossRefGoogle Scholar
  35. 35.
    Kim WS, Jun YK, Kim KH, Hong SH (2009) J Magn Magn Mater 321:3262CrossRefGoogle Scholar
  36. 36.
    Dutta DP, Mandal BP, Mukadam MD, Yusuf SM, Tyagi AK (2014) Dalton Trans 43:7838CrossRefGoogle Scholar
  37. 37.
    Priya S, Banu IBS, Mohammed Z (2017) J Mater Sci Mater Electron 28:8467Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsB. S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia

Personalised recommendations