Advertisement

Mesoporous silica modified luminescent Gd2O3:Eu nanoparticles: physicochemical and luminescence properties

  • Ali Aldalbahi
  • Mostafizur Rahaman
  • Anees A. Ansari
Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • 18 Downloads

Abstract

Highly colloidal Gd2O3:Eu nanoparticles (core-NPs) were synthesized by thermal decomposition via weak base at low temperature. The sol–gel chemical process was employed for silica layer surface coating to increase solubility, colloidal stability, biocompatibility, and non-toxicity at the ambient conditions. XRD results indicate the highly purified, crystalline, single phase, and cubic phase Gd2O3 nanocrystals. TEM image shows that the mesoporous thick silica layer was effectively coated on the core nanocrystals, which have irregular size with nearly spherical shape and grain size about 10–30 nm. An absorption spectra and zeta potential results in aqueous media revealed that solubility, colloidal stability, and biocompatibility character were enhanced from core to core–shell structure because of silica layer surface encapsulation. The samples, demonstrated excellent photoluminescence properties (dominant emission 5D0 → 7F2 transition in the red region at 610 nm), indicated to be used in optical bio-detection, bio-labeling, etc. The photoluminescence intensity of the silica shell modified core/shell NPs was suppressed relatively core-NPs; it indicates the multi-photon relaxation pathways arising from the surface coated high vibrational energy molecules of the silanol groups. The core/nSiO2/mSiO2 nanocrystals display strong emission (5D0 → 7F2) transition along with excellent solubility and biocompatibility, which may find promising applications in the photonic based biomedical field.

Highlights

  • • Multi-silica layers coated luminescent Gd2O3:Eu@nSiO2@mSiO2 core–shell nanoparticles.

  • • Mesoporous, highly aqueous dispersible core-shell nanoparticles.

  • • Impact of silica shell on physiochemical properties.

  • • Excellent absorbance and photoluminescence properties.

Keywords

Gadolinium oxide Mesoporous silica Biocompatible Zeta potential Luminescence properties 

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No. RG-1436-005.

Authors contributions

The idea is from Dr. Ali Aldalbahi and Dr. Anees A Ansari, the manuscript was mainly written by AAA and AA. MR helped in the technical support for the characterization. All authors read and approved the final manuscript. and there is no conflict of interest.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li IF, Su CH, Sheu HS, Chiu HC, Lo YW, Lin WT, Chen JH, Yeh CS (2008) Gd2O(CO3)(2)center dot H2O particles and the corresponding Gd2O3: synthesis and applications of magnetic resonance contrast agents and template particles for hollow spheres and hybrid composites. Adv Funct Mater 18:766–776.  https://doi.org/10.1002/adfm.200700702 CrossRefGoogle Scholar
  2. 2.
    Shao YZ, Tian XM, Hu WY, Zhang YY, Liu H, He HQ, Shen YY, Xie FK, Li L (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33:6438–6446.  https://doi.org/10.1016/j.biomaterials.2012.05.065 CrossRefGoogle Scholar
  3. 3.
    Liu YC, Yang PP, Wang WX, Dong HX, Lin J (2010) Fabrication and photoluminescence properties of hollow Gd2O3:Ln (Ln = Eu3+, Sm3+) spheres via a sacrificial template method. Crystengcomm 12:3717–3723.  https://doi.org/10.1039/c0ce00145g CrossRefGoogle Scholar
  4. 4.
    Tian G, Gu ZJ, Liu XX, Zhou LJ, Yin WY, Yan L, Jin S, Ren WL, Xing GM, Li SJ, Zhao YL (2011) Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. J Phys Chem C 115:23790–23796.  https://doi.org/10.1021/jp209055t CrossRefGoogle Scholar
  5. 5.
    Yang GX, Lv RC, Gai SL, Dai YL, He F, Yang PP (2014) Multifunctional SiO2@Gd2O3:Yb/Tm hollow capsules: controllable synthesis and drug release properties. Inorg Chem 53:10917–10927.  https://doi.org/10.1021/ic501121t CrossRefGoogle Scholar
  6. 6.
    Raju GSR, Pavitra E, Yu JS (2013) Facile template free synthesis of Gd2O(CO3)(2).H2O chrysanthemum-like nanoflowers and luminescence properties of corresponding Gd2O3:RE3+Spheres. Dalton Trans 42:11400–11410.  https://doi.org/10.1039/c3dt51154e CrossRefGoogle Scholar
  7. 7.
    Shi HZ, Li L, Zhang LY, Wang TT, Wang CG, Su ZM (2015) Facile fabrication of hollow mesoporous Eu3+-doped Gd2O3 nanoparticles for dual-modal imaging and drug delivery. Dyes Pigments 123:8–15.  https://doi.org/10.1016/j.dyepig.2015.07.015 CrossRefGoogle Scholar
  8. 8.
    Huang CC, Liu TY, Su CH, Lo YW, Chen JH, Yeh CS (2008) Superparamagnetic hollow and paramagnetic porous Gd2O3 particles. Chem Mater 20:3840–3848.  https://doi.org/10.1021/cm703195u CrossRefGoogle Scholar
  9. 9.
    Ansari AA, Parchur AK, Alam M, Azzeer A (2014) Effect of surface coating on optical properties of Eu3+-doped CaMoO4 nanoparticles. Spectrochim Acta A 131:30–36.  https://doi.org/10.1016/j.saa.2014.04.036 CrossRefGoogle Scholar
  10. 10.
    Ansari AA, Parchur AK, Alam M, Labis J, Azzeer A (2014) Influence of surface coating on structural and photoluminescent properties of CaMoO4:Pr nanoparticles. J Fluoresc 24:1253–1262.  https://doi.org/10.1007/s10895-014-1409-9 CrossRefGoogle Scholar
  11. 11.
    Zhu L, Liu XM, Liu XD, Li Q, Li JY, Zhang SY, Meng J, Cao XQ (2006) Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties. Nanotechnology 17:4217–4222.  https://doi.org/10.1088/0957-4484/17/16/036 CrossRefGoogle Scholar
  12. 12.
    Chai RT, Lian HZ, Yang PAP, Fan Y, Hou ZY, Kang XJ, Lin J (2009) In situ preparation and luminescent properties of LaPO4:Ce3+, Tb3+ nanoparticles and transparent LaPO4:Ce3+, Tb3+/PMMA nanocomposite. J Colloid Interf Sci 336:46–50.  https://doi.org/10.1016/j.jcis.2009.03.079 CrossRefGoogle Scholar
  13. 13.
    Grzyb T, Weclawiak M, Lis S (2012) Influence of nanocrystals size on the structural and luminescent properties of GdOF:Eu3+. J Alloy Compd 539:82–89.  https://doi.org/10.1016/j.jallcom.2012.06.047 CrossRefGoogle Scholar
  14. 14.
    Ding MY, Lu CH, Ni YR, Xu ZZ (2014) Rapid microwave-assisted flux growth of pure beta-NaYF4:Yb3+, Ln(3+) (Ln = Er, Tm, Ho) microrods with multicolor upconversion luminescence. Chem Eng J 241:477–484.  https://doi.org/10.1016/j.cej.2013.10.045 CrossRefGoogle Scholar
  15. 15.
    Mi CC, Tian ZH, Han BF, Mao CB, Xu SK (2012) Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors. J Alloy Compd 525:154–158.  https://doi.org/10.1016/j.jallcom.2012.02.095 CrossRefGoogle Scholar
  16. 16.
    Liu XX, Ni YR, Zhu C, Fang L, Kou JH, Lu CH, Xu ZZ (2016) Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties. Nanotechnology.  https://doi.org/10.1088/0957-4484/27/29/295605
  17. 17.
    Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723.  https://doi.org/10.1021/cm803151y CrossRefGoogle Scholar
  18. 18.
    Chaudhary S, Kumar S, Umar A, Singh J, Rawat M, Mehta SK (2017) Europium-doped gadolinium oxide nanoparticles: a potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ions. Sens Actuators B 243:579–588.  https://doi.org/10.1016/j.snb.2016.12.002 CrossRefGoogle Scholar
  19. 19.
    Chen GW, Qi WC, Li YB, Yang CS, Zhao XP (2016) Hydrothermal synthesis of Y2O3:Eu3+ nanorods and its growth mechanism and luminescence properties. J Mater Sci Mater Electron 27:5628–5634.  https://doi.org/10.1007/s10854-016-4470-0 CrossRefGoogle Scholar
  20. 20.
    Dhananjaya N, Nagabhushana H, Nagabhushana BM, Rudraswamy B, Shivakumara C, Chakradhar RPS (2011) Hydrothermal synthesis, characterization and Raman studies of Eu3+ activated Gd2O3 nanorods. Phys B Condens Matter 406:1639–1644.  https://doi.org/10.1016/j.physb.2010.09.050 CrossRefGoogle Scholar
  21. 21.
    Marques VS, Cavalcante LS, Sczancoski JC, Alcantara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Li MS, Santos MRMC (2010) Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst Growth Des 10:4752–4768.  https://doi.org/10.1021/cg100584b CrossRefGoogle Scholar
  22. 22.
    Runowski M, Ekner-Grzyb A, Mrowczynska L, Balabhadra S, Grzyb T, Paczesny J, Zep A, Lis S (2014) Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF(3)@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation. Langmuir 30:9533–9543.  https://doi.org/10.1021/la501107a CrossRefGoogle Scholar
  23. 23.
    Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157.  https://doi.org/10.1016/j.apsusc.2013.09.169 CrossRefGoogle Scholar
  24. 24.
    Song YH, You HP, Huang YJ, Yang M, Zheng YH, Zhang LH, Guo N (2010) Highly uniform and monodisperse Gd2O2S:Ln(3+) (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorg Chem 49:11499–11504.  https://doi.org/10.1021/ic101608b CrossRefGoogle Scholar
  25. 25.
    Yang J, Quan ZW, Kong DY, Liu XM, Lin J (2007) Y2O3: Eu3+ microspheres: solvothermal synthesis and luminescence properties. Cryst Growth Des 7:730–735.  https://doi.org/10.1021/cg060717j CrossRefGoogle Scholar
  26. 26.
    Zhang CM, Cheng ZY, Yang PP, Xu ZH, Peng C, Li GG, Lin J (2009) Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir 25:13591–13598.  https://doi.org/10.1021/la9019684 CrossRefGoogle Scholar
  27. 27.
    Jia G, You HP, Liu K, Zheng YH, Guo N, Zhang HJ (2010) Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Langmuir 26:5122–5128.  https://doi.org/10.1021/la903584j CrossRefGoogle Scholar
  28. 28.
    Jia GA, You HP, Song YH, Huang YJ, Yang M, Zhang HJ (2010) Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route. Inorg Chem 49:7721–7725.  https://doi.org/10.1021/ic100430g CrossRefGoogle Scholar
  29. 29.
    Ansari AA, Alam M, Labis JP, Alrokayan SA, Shafi G, Hasan TN, Syed NA, Alshatwi AA (2011) Luminescent mesoporous LaVO4:Eu3+ core–shell nanoparticles: synthesis, characterization, biocompatibility and their cytotoxicity. J Mater Chem 21:19310–19316.  https://doi.org/10.1039/c1jm12871j CrossRefGoogle Scholar
  30. 30.
    Ansari AA, Labis JP, Manthrammel MA (2017) Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: synthesis, structural and luminescence properties. Solid State Sci 71:117–122.  https://doi.org/10.1016/j.solidstatesciences.2017.07.012 CrossRefGoogle Scholar
  31. 31.
    Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849.  https://doi.org/10.1021/ja0719780 CrossRefGoogle Scholar
  32. 32.
    Ansari AA, Hasan TN, Syed NA, Labis JP, Parchur AK, Shafi G, Alshatwi AA (2013) In-vitro cyto-toxicity, geno-toxicity, and bio-imaging evaluation of one-pot synthesized luminescent functionalized mesoporous SiO2@Eu(OH)(3) core-shell microspheres. Nanomed Nanotechnol Biol Med 9:1328–1335.  https://doi.org/10.1016/j.nano.2013.05.006 CrossRefGoogle Scholar
  33. 33.
    Ansari AA, Labis JP (2012) One-pot synthesis and photoluminescence properties of luminescent functionalized mesoporous SiO2@Tb(OH)(3) core-shell nanospheres. J Mater Chem 22:16649–16656.  https://doi.org/10.1039/c2jm33583b CrossRefGoogle Scholar
  34. 34.
    Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217.  https://doi.org/10.1021/ja046275m CrossRefGoogle Scholar
  35. 35.
    Luo Z, Cai KY, Hu Y, Zhao L, Liu P, Duan L, Yang WH (2011) Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem Int Ed 50:640–643.  https://doi.org/10.1002/anie.201005061 CrossRefGoogle Scholar
  36. 36.
    Paek J, Lee CH, Choi J, Choi SY, Kim A, Lee JW, Lee K (2007) Gadolinium oxide nanoring and nanoplate: anisotropic shape control. Cryst Growth Des 7:1378–1380.  https://doi.org/10.1021/cg070229r CrossRefGoogle Scholar
  37. 37.
    Gaspar RDL, Mazali IO, Sigoli FA (2010) Particle size tailoring and luminescence of europium(III)-doped gadolinium oxide obtained by the modified homogeneous precipitation method: dielectric constant and counter anion effects. Colloids Surf A 367:155–160.  https://doi.org/10.1016/j.colsurfa.2010.07.003 CrossRefGoogle Scholar
  38. 38.
    Guo HC, Idris NM, Zhang Y (2011) LRET-based biodetection of DNA release in live cells using surface-modified upconverting fluorescent nanoparticles. Langmuir 27:2854–2860.  https://doi.org/10.1021/la102872v CrossRefGoogle Scholar
  39. 39.
    Wang Y, Yang T, Ke HT, Zhu AJ, Wang YY, Wang JX, Shen JK, Liu G, Chen CY, Zhao YL, Chen HB (2015) Smart albumin-biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater 27: 3874.  https://doi.org/10.1002/adma.201500229
  40. 40.
    Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T-1 MR1 contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T-1 MR images. Acs Nano 3:3663–3669.  https://doi.org/10.1021/nn900761s CrossRefGoogle Scholar
  41. 41.
    Paul N, Mohanta D (2016) Evaluation of optoelectronic response and Raman active modes in Tb3+ and Eu3+-doped gadolinium oxide (Gd2O3) nanoparticle systems. Appl Phys A. http://doi.org/1007/s00339-016-0347-6Google Scholar
  42. 42.
    Runowski M, Goderski S, Paczesny J, Ksiezopolska-Gocalska M, Ekner-Grzyb A, Grzyb T, Rybka JD, Giersig M, Lis S (2016) Preparation of biocompatible, luminescent-plasmonic core/shell nanomaterials based on lanthanide and gold nanoparticles exhibiting SERS effects. J Phys Chem C 120:23788–23798.  https://doi.org/10.1021/acs.jpcc.6b06644 CrossRefGoogle Scholar
  43. 43.
    Grzyb T, Runowski M, Dąbrowska K, Giersig M, Lis S (2013) Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals. J Nanopart Res 15:1–15.  https://doi.org/10.1007/s11051-013-1958-x CrossRefGoogle Scholar
  44. 44.
    Runowski M, Grzyb T, Zep A, Krzyczkowska P, Gorecka E, Giersig M, Lis S (2014) Eu3+ and Tb3+ doped LaPO4 nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSA Adv 4:46305–46312.  https://doi.org/10.1039/c4ra06168c CrossRefGoogle Scholar
  45. 45.
    Huang CC, Su CH, Li WM, Liu TY, Chen JH, Yeh CS (2009) Bifunctional Gd2O3/C Nanoshells for MR Imaging and NIR Therapeutic Applications. Adv Funct Mater 19:249–258.  https://doi.org/10.1002/adfm.200801454 CrossRefGoogle Scholar
  46. 46.
    Li ZQ, Wang LM, Wang ZY, Liu XH, Xiong YJ (2011) Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions. J Phys Chem C 115:3291–3296.  https://doi.org/10.1021/jp110603r CrossRefGoogle Scholar
  47. 47.
    Ansari AA, Aldalbahi AK, Labis JP, Manthrammel MA (2017) Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. J Fluor Chem 199:7–13.  https://doi.org/10.1016/j.jfluchem.2017.03.015 CrossRefGoogle Scholar
  48. 48.
    Xu ZH, Li CX, Ma PA, Hou ZY, Yang DM, Kang XJ, Lin J (2011) Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3:Er3 + @nSiO(2)@mSiO(2) nanocomposite as a drug carrier. Nanoscale 3:661–667.  https://doi.org/10.1039/c0nr00695e CrossRefGoogle Scholar
  49. 49.
    Szczeszak A, Ekner-Grzyb A, Runowski M, Szutkowski K, Mrowczynska L, Kazmierczak Z, Grzyb T, Dabrowska K, Giersig M, Lis S (2016) Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2. J Colloid Interf Sci 481:245–255.  https://doi.org/10.1016/j.jcis.2016.07.025 CrossRefGoogle Scholar
  50. 50.
    Grzyb T, Runowski M, Dabrowska K, Giersig M, Lis S (2013) Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals. Journal of Nanoparticle Research 15. UNSP 195810.1007/s11051-013-1958-xGoogle Scholar
  51. 51.
    Ansari AA, Yadav R, Rai SB (2016) Enhanced luminescence efficiency of aqueous dispersible NaYF4:Yb/Er nanoparticles and the effect of surface coating. RSC Adv 6:22074–22082.  https://doi.org/10.1039/c6ra00265j CrossRefGoogle Scholar
  52. 52.
    Ansari AA, Parchur AK, Kumar B, Rai SB (2016) Influence of shell formation on morphological structure, optical and emission intensity on aqueous dispersible NaYF4:Ce/Tb nanoparticles. J Fluoresc 26:1151–1159.  https://doi.org/10.1007/s10895-016-1824-1 CrossRefGoogle Scholar
  53. 53.
    Ansari AA, Manthrammel MA (2017) Surface coating effect on structural, optical and photoluminescence properties of Eu3+ doped yttrium fluoride nanoparticles. J Inorg Organomet Polym Mater 27:194–200.  https://doi.org/10.1007/s10904-016-0463-y CrossRefGoogle Scholar
  54. 54.
    Lechevallier S, Lecante P, Mauricot R, Dexpert H, Dexpert-Ghys J, Kong HK, Law GL, Wong KL (2010) Gadolinium-Europium carbonate particles: controlled precipitation for luminescent biolabeling. Chem Mater 22:6153–6161.  https://doi.org/10.1021/cm102134k CrossRefGoogle Scholar
  55. 55.
    Ren H, Zhang LY, Wang TT, Li L, Su ZM, Wang CG (2013) Universal and facile synthesis of multicolored upconversion hollow nanospheres using novel poly(acrylic acid sodium salt) microspheres as templates. Chem Commun 49:6036–6038.  https://doi.org/10.1039/c3cc41284a CrossRefGoogle Scholar
  56. 56.
    Kang JG, Min BK, Sohn Y (2015) Synthesis and characterization of Gd(OH)(3) and Gd2O3 nanorods. Ceram Int 41:1243–1248.  https://doi.org/10.1016/j.ceramint.2014.09.053 CrossRefGoogle Scholar
  57. 57.
    Li JG, Zhu Q, Li XD, Sun XD, Sakka Y (2011) Colloidal processing of Gd2O3:Eu3+ red phosphor monospheres of tunable sizes: solvent effects on precipitation kinetics and photoluminescence properties of the oxides. Acta Mater 59:3688–3696.  https://doi.org/10.1016/j.actamat.2011.03.004 CrossRefGoogle Scholar
  58. 58.
    Macedo AG, Ferreira RAS, Ananias D, Reis MS, Amaral VS, Carlos LD, Rocha J (2010) Effects of phonon confinement on anomalous thermalization, energy transfer, and upconversion in Ln(3+)-doped Gd2O3 nanotubes. Adv Funct Mater 20:624–634.  https://doi.org/10.1002/adfm.200901772 CrossRefGoogle Scholar
  59. 59.
    Xu ZH, Gao Y, Huang SS, Ma PA, Lin J, Fang JY (2011) A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO(2)@mSiO(2) nanocomposite as a drug carrier. Dalton Trans 40:4846–4854.  https://doi.org/10.1039/c1dt10162e CrossRefGoogle Scholar
  60. 60.
    Ansari AA, Labis JP (2012) Preparation and photoluminescence properties of hydrothermally synthesized YVO4:Eu3+ nanofibers. Mater Lett 88:152–155.  https://doi.org/10.1016/j.matlet.2012.08.033 CrossRefGoogle Scholar
  61. 61.
    Ansari AA, Labis JP, Alrokayan SAH (2012) Synthesis of water-soluble luminescent LaVO4:Ln(3+) porous nanoparticles. J Nanopart Res.  https://doi.org/10.1007/S11051-012-0999-X
  62. 62.
    Goglio G, Kaur G, Pinho SLC, Penin N, Blandino A, Geraldes CFGC, Garcia A, Delville MH (2015) Glycine-nitrate process for the elaboration of Eu3+-doped Gd2O3 bimodal nanoparticles for biomedical applications. Eur J Inorg Chem 7:1243–1253.  https://doi.org/10.1002/ejic.201402721
  63. 63.
    Guo KM, Li MY, Fang XL, Luoshan MD, Bai LH, Zhao XZ (2014) Performance enhancement in dye-sensitized solar cells by utilization of a bifunctional layer consisting of core shell beta-NaYF4:Er3+/Yb3+@SiO2 submicron hexagonal prisms. J Power Sources 249:72–78.  https://doi.org/10.1016/j.jpowsour.2013.10.067 CrossRefGoogle Scholar
  64. 64.
    He EJ, Zheng HR, Dong J, Gao W, Han QY, Li JN, Hui L, Lu Y, Tian HN (2014) Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln(3+)@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles. Nanotechnology.  https://doi.org/10.1088/0957-4484/25/4/045603
  65. 65.
    Kang XJ, Cheng ZY, Li CX, Yang DM, Shang MM, Ma PA, Li GG, Liu NA, Lin J (2011) Core–shell structured up-conversion luminescent and mesoporous NaYF4:Yb3+/Er3+@nSiO(2)@mSiO(2) nanospheres as carriers for drug delivery. J Phys Chem C 115:15801–15811.  https://doi.org/10.1021/jp203039t CrossRefGoogle Scholar
  66. 66.
    Kostiv U, Patsula V, Noculak A, Podhorodecki A, Vetvicka D, Pouckova P, Sedlakova Z, Horak D (2017) Phthalocyanine-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem 12:2066–2073.  https://doi.org/10.1002/cmdc.201700508 CrossRefGoogle Scholar
  67. 67.
    Jacobsohn LG, Bennett BL, Muenchausen RE, Tornga SC, Thompson JD, Ugurlu O, Cooke DW, Sharma ALL (2008) Multifunction Gd2O3: Eu nanocrystals produced by solution combustion synthesis: structural, luminescent, and magnetic characterization. J Appl Phys.  https://doi.org/10.1063/1.2931024
  68. 68.
    Ansari AA, Parchur AK, Kumar B, Rai SB (2016) Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties. J Mater Sci.  https://doi.org/10.1007/S10856-016-5791-5
  69. 69.
    Shi F, Zhai XS, Zheng KZ, Zhao D, Qin WP (2011) Synthesis of monodisperse NaYF4:Yb, Tm@SiO2 nanoparticles with intense ultraviolet upconversion luminescence. J Nanosci Nanotechnol 11:9912–9915.  https://doi.org/10.1166/jnn.2011.5248 CrossRefGoogle Scholar
  70. 70.
    Sotiriou GA, Franco D, Poulikakos D, Ferrari A (2012) Optically stable biocompatible flame-made SiO2-coated Y2O3: Tb3+ nanophosphors for cell imaging. Acs Nano 6:3888–3897.  https://doi.org/10.1021/nn205035p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations