Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 255–263 | Cite as

CuO photoelectrodes synthesized by the sol–gel method for water splitting

  • J. Toupin
  • H. Strubb
  • S. Kressman
  • V. Artero
  • N. Krins
  • Ch. Laberty-RobertEmail author
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


CuO is an attractive photocatalytic material for water splitting due to its high earth abundance and low cost. In this paper, we report the deposition of CuO thin films by sol–gel dip-coating process. Sol deposition has attractive advantages including low-cost solution processing and uniform film formation over large areas with a fairly good control of the film stoichiometry and thickness. Pure CuO phase was obtained for calcination temperatures higher than 360 °C in air. The CuO photocurrents for hydrogen evolution depend on the crystallinity and the microstructure of the film. Values of −0.94 mA cm−2 at pH = 8 and 0 V vs. RHE were achieved for CuO photoelectrodes annealed at 400 °C under air. More interestingly, the stability of the photoelectrode was enhanced upon the sol–gel deposition of a TiO2 protective layer. In this all sol–gel CuO/TiO2 photocathode, a photocurrent of −0.5 mA cm−2 is achieved at pH = 7 and 0 V vs. RHE with a stability of ~100% over 600 s.


  • Sol–gel-based CuO photoelectrode has values of −0.94 mA cm−2 at pH = 8 and 0 V vs. RHE.

  • CuO/TiO2 photoelectrodes have been synthesized by the sol–gel chemistry coupled with dip-coating.

  • These photoelectrodes exhibit −0.5 mA cm−2 at pH = 7 and 0 V vs. RHE.

  • These photoelectrodes are 100% stable over 600 s.


CuO photoelectrode Sol–gel TiO2 protecting layer for CuO photoelectrode Water splitting 



This work was supported by the ANRT, the Agence Nationale de la Recherche through the LabEx ARCANE programme (ANR-11-LABX-0003-01), and Total-Energie Nouvelle.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4896_MOESM1_ESM.pdf (664 kb)
Supplementary Information


  1. 1.
    Dudley B (2014) BP Energy Outlook 2035. BP’s Energy Outlook 94:1-7.Google Scholar
  2. 2.
    Lewis NS, Nocera DGL (2006) Powering the planet: chemical challenges in solar energy utilization. PNAS 103(43):15729–15735Google Scholar
  3. 3.
    Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybri energy systems for stationary applications. Prog Energy Combust Sci 35(3):231–244Google Scholar
  4. 4.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38Google Scholar
  5. 5.
    Van de krol R (2012) Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M(ed) Photoelectrochemical hydrogen production. electronic materials: science & technology. Springer, Boston, MA, Boston, p 13–67. Vol. 102Google Scholar
  6. 6.
    Wadia C, Alivisatos AP, Kammen DM (2009) Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol 43(6):2072–2077Google Scholar
  7. 7.
    Dincer I (2002) Technical, environmental and exergetic aspects of hydrogen energy systems. Int J Hydrog Energ 27(3):265–285Google Scholar
  8. 8.
    Bhat SSM, Jang HW (2017) Recent advances in bismuth-based nanomaterials for photoelectrochemical water splitting. Chemsuschem 10(15):3001–3018Google Scholar
  9. 9.
    Abdi FF, Berglund SP (2017) Recent developments in complex metal oxide photoelectrodes. J Phys D-Appl Phys 50(19):22Google Scholar
  10. 10.
    Courtin E, Baldinozzi G, Sougrati MT, Stievano L, Sanchez C, Laberty-Robert C (2014) New Fe2TiO5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. J Mater Chem A 2(18):6567–6577Google Scholar
  11. 11.
    Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C (2012) Mesoporous alpha-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation. Phys Chem Chem Phys 14(38):13224–13232Google Scholar
  12. 12.
    Iandolo B, Wickman B, Zoric I, Hellman A (2015) The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J Mater Chem A 3(33):16896–16912Google Scholar
  13. 13.
    Sivula K, Le Formal F, Gratzel M (2011) Solar water splitting: progress using hematite (alpha-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449Google Scholar
  14. 14.
    Hilliard S, Baldinozzi G, Friedrich D, Kressman S, Strub H, Artero V, Laberty-Robert C (2017) Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol-gel dip coating approach. Sustain Energy Fuels 1(1):145–153Google Scholar
  15. 15.
    Hilliard S, Friedrich D, Kressman S, Strub H, Artero V, Laberty-Robert C (2017) Solar-water-splitting BiVO4 thin-film photoanodes prepared by using a sol-gel dip-coating technique. ChemPhotoChem 1(6):273–280Google Scholar
  16. 16.
    Song J, Cha J, Lee MG, Jeong HW, Seo S, Yoo JA, Kim TL, Lee J, No H, Kim DH, Jeong SY, An H, Lee BH, Bark CW, Park H, Jang HW, Lee S (2017) Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J Mater Chem A 5(35):18831–18838Google Scholar
  17. 17.
    Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461Google Scholar
  18. 18.
    Yoon SKM, Kim IS, Lim JH, Yoo B (2014) Manipulation of cuprous oxide surfaces for improving their photocatalytic activity. J Mater Chem A 2:11621–11627Google Scholar
  19. 19.
    Lin CY, Lai YH, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487Google Scholar
  20. 20.
    Paracchino A, Brauer JC, Moser JE, Thimsen E, Graetzel M (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116(13):7341–7350Google Scholar
  21. 21.
    Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456Google Scholar
  22. 22.
    Zhang Z, Dua R, Zhang L, Zhu H, Zhang H, Wang P (2013) Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7:1709–1717Google Scholar
  23. 23.
    Lim YF, Chua CS, Lee CJ, Chi D (2014) Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934Google Scholar
  24. 24.
    Jin Z, Zhang X, Li Y, Li S, Lu G (2007) 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8:1267–1273Google Scholar
  25. 25.
    Liu ZBH, Xu S, Sun DD (2011) Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. Int J Hydrog Energ 36(21):13473–13480Google Scholar
  26. 26.
    Pai YHF, Fang SY (2013) Preparation and characterization of porous Nb2O5 photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production by light-induced water splitting. J Power Sources 230:321–326Google Scholar
  27. 27.
    Paracchino A, Mathieu N, Hisatomi T, Stefik M, Tilley SD, Graetzel M (2012) Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ Sci 5:8673–8681Google Scholar
  28. 28.
    Morales-Guio CG, Tilley SD, Vrubel H, Gratzel M, Hu XL (2014) Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun 5:1-96.Google Scholar
  29. 29.
    Hench L, Hench, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72Google Scholar
  30. 30.
    Jia QX, McCleskey MTM, Burrell AK, Lin Y, Collis GE, Wang H, Li Q, Foltyn SR (2004) Polymer-assisted deposition of metal-oxide films. Natture Mater 3:529–532Google Scholar
  31. 31.
    Ray SC (2001) Preparation of copper oxide thin film by the solègel like dip technique and study of their structural and optical properties. Sol Energy Mater Sol Cells 68(3-4):307–312Google Scholar
  32. 32.
    Grosso D, Soler-Illia G, Crepaldi EL, Cagnol FF, Sinturel C,C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez CN (2003) Highly porous TiO2 Anatase optical thin films with cubic mesostructure stabilised at 700°C. Chem Mater 15(24):4562Google Scholar
  33. 33.
    Patterson AL (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982Google Scholar
  34. 34.
    Koshy J, Goerge KC (2015) Annealing effects on crystallite size and band gap of CuO nanoparticles. Int J Nanosci Nanotechnol 6(1):1–8Google Scholar
  35. 35.
    Habibi MH, Bahareh B (2014) Effect of annealing temperature on crystalline phase of copper oxide nanoparticle by coppe acetate precursor and sol-gel method. J Therm Anal Calorim 115(1):419–423Google Scholar
  36. 36.
    Nakaoka K, Ueyama J, Ogura K (2004) Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J Electrochem Soc 151:C661–C665Google Scholar
  37. 37.
    Kidowaki HO, Akiyama T, Suzuki A, Jeyadevan B, Cuya J (2012) Fabrication and Characterization of CuO-based solar cells. J Mater Sci Res 1(1):138–143Google Scholar
  38. 38.
    Johan MR, Suan MSM, Hawari NL, Ching HA (2011) Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int J Electrochem Sci 6:6094–6104Google Scholar
  39. 39.
    Choudhary S, Solanki A, Upadhyay S, Singh N, Satsangi VR, Shrivastav R, Dass S (2013) Nanostructured CuO/SrTiO3bilayered thin films for photoelectrochemical water splitting. J Solid State Electrochem 17(9):2531–2538Google Scholar
  40. 40.
    Zhang ZH, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22(6):2456–2464Google Scholar
  41. 41.
    Ma Q-B, Hofmann JP, Litke A, Hensen EJM (2015) Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting. Sol Energy Mater Sol Cells 141:178–186Google Scholar
  42. 42.
    Siripala W, Ivanovskaya A, Jaramillo TF, Baeck S-H, McFarland EW (2003) A Cu2O/TiO2heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77(3):229–237Google Scholar
  43. 43.
    Rokhmat M, Wibowo E, Sutisna, Khairurrijal, Abdullah M (2017) Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng 170(Supplement C):72–77Google Scholar
  44. 44.
    Zainun AR, Tomoya S, Mohd Noor U, Rusop M, Masaya I (2012) New approach for generating Cu2O/TiO2 composite films for solar cell applications. Mater Lett 66(1):254–256Google Scholar
  45. 45.
    Wang P, Wen X, Amal R, Ng YH (2015) Introducing a protective interlayer of TiO2 in Cu2O-CuO heterojunction thin film as a highly stable visible light photocathode. RSC Adv 5(7):5231–5236Google Scholar
  46. 46.
    Toupin J, Strub HP, Kressmann S, Boudot M, Artero V, Laberty C (2017) Engineering n-p junction for photo-electrochemical hydrogen production. Phys Chem Chem Phys.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de ParisSorbonne UniversitésParisFrance
  2. 2.Total Energies NouvellesPuteauxFrance
  3. 3.Laboratoire de Chimie et Biologie des MétauxUniversité Grenoble Alpes, CNRS, CEAGrenoble Cedex 9France

Personalised recommendations