Advertisement

Sol–gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films

  • A. Sierra-Fernandez
  • S. C. De la Rosa-García
  • R. Yañez-Macías
  • C. Guerrero-Sanchez
  • L. S. Gomez-Villalba
  • S. Gómez-Cornelio
  • M. E. Rabanal
  • U. S. Schubert
  • R. Fort
  • P. Quintana
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • 22 Downloads

Abstract

The evaluation of the antifungal activity of Mg(OH)2 and Ca(OH)2 nanoparticles (NPs), synthesized by sol–gel method and their mixtures at different concentrations, is reported. The antifungal activity of the hydroxide NPs was studied using Aspergillus niger and Penicillium oxalicum isolated from stone surfaces. These model organisms were selected due to their ability to grow on outdoor and indoor climates and their significant impact on human health. Moreover, the antifungal activity of Mg(OH)2 and Ca(OH)2 NPs dispersed in positively charged polymeric matrices based on partially quaternized poly(2-(dimethylamino ethyl) methacrylate) (pDMAEMA) was studied. With respect to the morphology, particle size, and textural properties of the NPs, the mixtures of Mg–Ca hydroxides revealed a uniform and smaller particle size, along with a greater surface area, as compared to pristine Ca(OH)2 NPs. However, the Ca(OH)2 and a mixture of Mg(OH)2 and Ca(OH)2 (10:90 weight ratio) NPs, showed an enhanced growth inhibition of A. niger and P. oxalicum, suggesting that the effect of particle size on the antifungal activity would not be a preponderating factor. In addition, improved antifungal properties against A. niger and P. oxalicum were detected in composite coatings based on hydroxide NPs dispersed in quaternized p(DMAEMA-co-METAI). The use of these systems might provide promising composite materials with potential antifungal properties for various applications.

Highlights

  • Pure Mg(OH)2, Ca(OH)2, and mixtures of both NPs were successfully synthesized by sol–gel method.

  • The mixtures based on Mg–Ca hydroxides showed a uniform and smaller particle size, along with a greater surface area.

  • The effect of particle size on the antifungal activity would not be a preponderating factor.

  • The Ca(OH)2 and Mg(OH)2:Ca(OH)2 (10:90 wt%) NPs had an enhanced antifungal efficiency.

  • The use of Mg(OH)2 and Ca(OH)2 NPs in p(DMAEMA-co-METAI) composites improved the antifungal efficacy of polymeric matrices.

Keywords

Aspergillus niger Penicillium oxalicum Hydroxide nanoparticles Antifungal coatings Poly[(2-dimethylamino) ethyl methacrylate] 

Notes

Acknowledgements

This study was financially supported by the National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología [CONACYT, Mexico]) of the “Fronteras de la Ciencia No. 138” project and by the Community of Madrid under the “Climortec”, BIA2014−53911-R, “Geomaterials 2” Programme (S2013/MIT_2914), and Multimat Challenge (S2013/MIT-2862). A.S.-F. would like to gratefully acknowledge the financial support of Santander Universidades through “Becas Iberoamérica Jóvenes Profesores e Investigadores, España 2015” scholarship program. C.G.-S., R.Y.-M., and U.S.S. thank CONACYT and the Deutscher Akademischer Austauschdienst (DAAD, Germany) for financial support within the framework of the funding program for international mobility PROALMEX 2015 (CONACyT project: 267752 and DAAD project: 57271725). C.G.-S. and U.S.S. also thank the Deutsche Forschungsgemeinschaft (DFG, Germany) for financial support for this research under the scheme of the grant SFB-1278 “PolyTarget” project B02. The authors also thank D. Aguilar, A. Cristobal, and D. Huerta for their valuable technical support. We also thank Adrián Gómez Guerrero of the National Center for Electron Microscopy (CNME, Madrid, Spain) for the assistance provided and for its support with TEM characterization.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR (2018) Biotechnol Adv 36:264–280CrossRefGoogle Scholar
  2. 2.
    Cámara B, Souza-Egipsy V, Ascaso C, Artieda O, De los Ríos A, Wierzchos J (2016) Chem Geol 443:22–31CrossRefGoogle Scholar
  3. 3.
    Garrido-Benavent I, Pérez-Ortega S, De los Ríos A (2017) Mol Phylogenet Evol 107:117–131CrossRefGoogle Scholar
  4. 4.
    Burforf EP, Fomina M, Gadd GM (2003) Mineral Mag 67:1127–1155CrossRefGoogle Scholar
  5. 5.
    Gadd GM (2017) Nat Microbiol 2:16275CrossRefGoogle Scholar
  6. 6.
    Gueidan C, Villaseñor CR, De Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) Stud Mycol 61:111–119CrossRefGoogle Scholar
  7. 7.
    Egbuta MA, Mwanza M, Oluranti Babalola O (2017) Int J Environ Res Public Health 14:719CrossRefGoogle Scholar
  8. 8.
    Sierra-Fernandez A, De la Rosa-García SC, Gómez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) ACS Appl Mater Interfaces 9:24873–24886CrossRefGoogle Scholar
  9. 9.
    Wang L, Chen H, Shao L (2017) Int J Nanomed 12:1227–1249CrossRefGoogle Scholar
  10. 10.
    Farrokhi M, Yang JK, Lee SM, Shirzad-Siboni M (2013) J Environ Health Sci Eng 2:11–23Google Scholar
  11. 11.
    Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) Appl Phys A: Mater 100:829–834CrossRefGoogle Scholar
  12. 12.
    Gómez-Ortíz N, De la Rosa-García S, González-Gómez W, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales B (2013) ACS Appl Mater Interfaces 5:1556–1565CrossRefGoogle Scholar
  13. 13.
    Božanić D, Dimitrijević-Branković S, Bibić N, Luyt AS, Djoković V (2011) Carbohydr Polym 83:883–890CrossRefGoogle Scholar
  14. 14.
    Bognadović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Mater Lett 128:75–78CrossRefGoogle Scholar
  15. 15.
    Elhusseiny AF, Hassan HH (2013) Spectrochim Acta A Mol Biomol Spectrosc 103:232–245CrossRefGoogle Scholar
  16. 16.
    Raghunath A, Perumal (2017) Int J Antimicrob Agents 49:137–152CrossRefGoogle Scholar
  17. 17.
    Khatir NM, Abdul-Malek Z, Zak AK, Akbari A, Sabbagh F (2016) J Sol-Gel Sci Technol 78:91–98CrossRefGoogle Scholar
  18. 18.
    Chandra Ray P, Yu H, Fu PP (2009) J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35CrossRefGoogle Scholar
  19. 19.
    Kabir E, Kumar V, K-H Kim, ACK Yip (2018) J Environ Manage 225: 261–271Google Scholar
  20. 20.
    Booster JL, Van Sandwijk A, Reuter MA (2003) Miner Eng 16:273–281CrossRefGoogle Scholar
  21. 21.
    Sierra-Fernandez A, Gomez-Villalba LS, Rabanal ME, Fort R (2017) Mater Constr 67:325CrossRefGoogle Scholar
  22. 22.
    Poggi G, Giorgi R, Toccafondi N, Katzur V, Baglioni P (2010) Langmuir 26:19084–19090CrossRefGoogle Scholar
  23. 23.
    Al-Hazmi F, Umar A, Dar GN, Al-Ghamdi AA, Al-Sayari SA, Al-Hajry A, Kim SH, Al-Tuwirqi RM, Alnowaiserb F, El-Tantawy F (2012) J Alloy Compd 519:4–8CrossRefGoogle Scholar
  24. 24.
    Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F (2010) Acta Biomater 6:1861–1868CrossRefGoogle Scholar
  25. 25.
    Qiu L, Xie R, Ding P, Qu B (2003) Compos Struct 62:391–395CrossRefGoogle Scholar
  26. 26.
    Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Dei L (2014) Langmuir 30:660–668CrossRefGoogle Scholar
  27. 27.
    Zhu G, Schwendeman SP (2000) Pharm Res 17:351–357CrossRefGoogle Scholar
  28. 28.
    Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Xiong G (2013) ACS Appl Mater Interfaces 5:1137–1142CrossRefGoogle Scholar
  29. 29.
    Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Mukhopadhyay AK (2017) J Mech Behav Biomed Mater 72:110–128CrossRefGoogle Scholar
  30. 30.
    Halbus AF, Horozov TS, Paunov N (2017) Adv Colloid Interface Sci 249:134–148CrossRefGoogle Scholar
  31. 31.
    Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ (2016) Materials 9:599CrossRefGoogle Scholar
  32. 32.
    Tang L, Gu W, Yi W, Bitter JL, Hong JY, Fairbrother DH, Loon Chen K (2013) J Membr Sci Technol 446:201–211CrossRefGoogle Scholar
  33. 33.
    Wu T, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Food Chem 197:250–256CrossRefGoogle Scholar
  34. 34.
    Liu T, Ding E, Xue F (2017) Int J Biol Macromol 103:1107–1112CrossRefGoogle Scholar
  35. 35.
    Yamada K, Takagi C, Hirata M (2007) J Appl Polym Sci 104:3301–3308CrossRefGoogle Scholar
  36. 36.
    Romano CE, Gallo EA (2001) Ink Jet Print Method 6:202–224. US PatentGoogle Scholar
  37. 37.
    Hinton TM, Challagulla A, Stewart CR, Guerrero- Sanchez C, Grusche FA, Shi S, Bean AG, Monaghan P, Gunatillake PA, Thang SH, Tizard ML (2014) Nanomedicine 9:1141–1154CrossRefGoogle Scholar
  38. 38.
    Hinton TM, Guerrero-Sanchez C, Graham JE, Le T, Muir BW, Shi S, Tizard MLV, Gunatillake PA, McLean KM, San H, Thang SH (2012) Biomaterials 33:7631–7642CrossRefGoogle Scholar
  39. 39.
    Ravikumar T, Murata H, Koepsel RR, Russell A (2006) Biomacromolecules 7:2762–2769CrossRefGoogle Scholar
  40. 40.
    Rawlinson L-AB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2010) Biomacromolecules 11:443–453CrossRefGoogle Scholar
  41. 41.
    Yandi W, Mieszkin S, Callow ME, Callow JA, Finlay JA, Liedberg B, Edert T (2017) Biofouling 33:169–183CrossRefGoogle Scholar
  42. 42.
    Chen Y, Wilbon PA, Chen YP, Zhou J, Nagarkatti M, Wang C, Chu F, Decho AW, Tang C (2012) RSC Adv 2:10275–10282CrossRefGoogle Scholar
  43. 43.
    Yañez-Macias R, Alvarez-Moises I, Perevyazko I, Lezov A, Guerrero-Santos C, Schubert US, Guerrero-Sanchez C (2017) Macromol Chem Phys 218:1700065CrossRefGoogle Scholar
  44. 44.
    Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Smson RA (2014) Stud Mycol 78:63–139CrossRefGoogle Scholar
  45. 45.
    Crameri R, Garbani M, Rhyner C, Huitema C (2014) 69: 176–185Google Scholar
  46. 46.
    Rodríguez-Carvajal JJ (1993) Phys B 192:55–69CrossRefGoogle Scholar
  47. 47.
    Gómez-Cornelio S, Ortega-Morales O, Morón-Ríos A, Reyes-Estebanez M, De la Rosa-Garcia S (2016) Act Bot Mex 117:59–77CrossRefGoogle Scholar
  48. 48.
    Clinical and Laboratory Standards Institute (CLSI) (2004) Method for antifungal well diffusion susceptibility Testing of Yeast M-44AGoogle Scholar
  49. 49.
    Hammer Ø, Harper DAT, Ryan PD (2001) Palaeontol Electron 4, 9Google Scholar
  50. 50.
    Liu HQ, Zong RW, Lo S, Hu Y, Zhi Y (2018) Procedia Eng 211:447–455CrossRefGoogle Scholar
  51. 51.
    Siqueira JF, Lopes HP (1999) Int Endod J 32:361–369CrossRefGoogle Scholar
  52. 52.
    Carmona-Ribeiro AM, Dias de Melo-Carrasco L (2013) Int J Mol Sci 14:9906–9946CrossRefGoogle Scholar
  53. 53.
    Kourmouli A, Valenti M, Rijn van E, Beaumont JE, Kalantzi O-I, Schmidt-Ott A, Biskos G (2018) J Nanopart Res 20:62CrossRefGoogle Scholar
  54. 54.
    Brotzmann V, Schuermann M, Katschmidt B, Kaltschmidt C, Sudhoff H (2017) J Microb Biochem Technol 9:249–256Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Geociencias (CSICMadridSpain
  2. 2.Laboratorio de Microbiología Aplicada, División de Ciencias BiológicasUniversidad Juárez Autónoma de Tabasco (UJAT)TabascoMexico
  3. 3.Departamento de Materiales AvanzadosCentro de investigación en Química Aplicada. BlvdSaltilloMexico
  4. 4.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  5. 5.Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
  6. 6.Universidad Politécnica del Centro. Km 22.5 Carretera Federal Villahermosa-Teapa, TumbulushalTabascoMexico
  7. 7.Departamento de Ciencia e Ingeniería de Materiales e Ingeniería QuímicaUniversidad Carlos III de Madrid e Instituto Tecnológico de Química y Materiales “Álvaro Alonso Barba” (IAAB)MadridSpain
  8. 8.CINVESTAV-IPN, Departamento de Física AplicadaUnidad MéridaYucatánMexico

Personalised recommendations