Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 2, pp 370–379 | Cite as

Comparison and evaluation of in vitro degradation behaviors of organosilicone-modified gelatin hybrids

  • Zetian Zhang
  • Xiaona Han
  • Weining Du
  • Zhengjun LiEmail author
  • Lixin LiEmail author
Original Paper: Characterization methods of sol–gel and hybrid materials
  • 15 Downloads

Abstract

Degradation behavior is one of the most important characteristics of biomedical materials for their applications. Herein, we systematically investigate the in vitro degradation behaviors of γ-glycidoxypropyltrimethoxysilane (GT) and/or epoxy-terminated polydimethylsiloxane oligomer (ES)-modified gelatin hybrid materials in physiological conditions. Their microscopic appearance, chemical composition, thermal performance, and mechanical properties at different degradation periods were thoroughly characterized by a series of measurements. It was found that the degradation behavior of silica–gelatin hybrids could be modulated by controlling the proportion of GT to ES oligomers. In particular, ES/GT-G hybrid as a result of combination of ES and GT, exhibited a faster degradation rate than that of GT-G hybrid when using merely GT, and showed a more homogeneous degradation behavior during the degradation process. Additionally, these silica–gelatin hybrids showed low cytotoxicity to human renal epithelial cells, and the cell viability was all above 83%. This work is helpful for a further insight into the in vivo degradation of silica–gelatin hybrid scaffolds, which are promising in biomedical applications.

Highlights

  • In vitro degradation behaviors of silica–gelatin hybrids were tested in physiological conditions.

  • Degradation behaviors of silica–gelatin hybrids could be modulated by the proportion of GT to ES oligomers.

  • ES/GT-G hybrid showed a faster and more homogeneous degradation performance.

  • The prepared silica–gelatin hybrids exhibited cytocompatibility in vitro.

Keywords

Silica–gelatin hybrid Organosilicone oligomer Degradation Cytotoxicity Biomaterial 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21376153) and Suzhou International Science and Technology Cooperative Project (SH201108). The authors would thank Wang Zhonghui (College of Light Industry, Textile, and Food Engineering, Sichuan University) for her great help in SEM observation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4883_MOESM1_ESM.docx (264 kb)
Supplementary Informations

References

  1. 1.
    Artzi N, Oliva N, Puron C, Shitreet S, Artzi S, Ramos AB, Groothuis A, Sahagian G, Edelman ER (2011) Nat Mater 10(9):704–709Google Scholar
  2. 2.
    Parenteaubareil R, Gauvin R, Berthod F (2010) Materials 3(3):1863–1887Google Scholar
  3. 3.
    Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Acta Biomater 8(9):3191–3200Google Scholar
  4. 4.
    Depan D, Shah JS, Misra RDK (2013) Polym Degrad Stab 98(11):2331–2339Google Scholar
  5. 5.
    Zhuang H, Zheng JP, Gao H, Yao KD (2007) J Mater Sci Mater Med 18(5):951–957Google Scholar
  6. 6.
    Zulkifli FH, Hussain FSJ, Yusoff MM (2014) Polym Degrad Stab 110(110):473–481Google Scholar
  7. 7.
    Su K, Wang C (2015) Biotechnol Lett 37(11):2139–2145Google Scholar
  8. 8.
    Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Food Hydrocolloid 25(8):1813–1827Google Scholar
  9. 9.
    Goncalves S, Chiossone-Kerdel JA, Bianco AS, Ercolino JM, Hernandez-Rojas J (2015) Acta Otolaryngol 135(1):14–25Google Scholar
  10. 10.
    Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He AJ, Zhang WJ, Zhou GD (2014) Biomaterials 35(1):152–164Google Scholar
  11. 11.
    Lei B, Shin KH, Koh YH, Kim HE (2014) J Biomed Mater Res B 102(7):1528–1536Google Scholar
  12. 12.
    Rutnakornpituk M, Ngamdee P, Phinyocheep P (2006) Carbohydr Polym 63(2):229–237Google Scholar
  13. 13.
    Xue Y, Wang L, Shao Y, Jin Y, Chen X, Lei B (2014) Chem Eng J 251(251):158–164Google Scholar
  14. 14.
    Kaali P, Momcilovic D, Markström A, Aune R, Czel G, Karlsson S (2010) J Appl Polym Sci 115(2):802–810Google Scholar
  15. 15.
    Rhee SH, Choi JY, Kim HM (2002) Biomaterials 23(24):4915–4921Google Scholar
  16. 16.
    Tonda-Turo C, Gentile P, Saracino S, Chiono V, Nandagiri VK, Muzio G, Canuto RA, Ciardelli G (2011) Int J Biol Macromol 49(4):700–706Google Scholar
  17. 17.
    Han X, Du W, Li Y, Li Z, Li L (2016) J Appl Polym Sci 133(8)  https://doi.org/10.1002/APP.43059
  18. 18.
    Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE (2012) J Mater Chem 22(28):14133–14140Google Scholar
  19. 19.
    Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR (2010) Adv Funct Mater 20(22):3835–3845Google Scholar
  20. 20.
    Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) Biomaterials 26(36):7616–7627Google Scholar
  21. 21.
    Australia S (2009) Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. International Organization for Standardization: Geneva, SwitzerlandGoogle Scholar
  22. 22.
    Mosmann TJ (1983) Immunol Methods 65(1-2):55–63Google Scholar
  23. 23.
    Sisson K, Zhang C, Farachcarson MC, Chase DB, Rabolt JF (2009) Biomacromolecules 10(7):1675–1680Google Scholar
  24. 24.
    Du WN, Han XN, Li ZJ, Li YP, Li, LX, Wang, KY (2015) J Appl Polym Sci 132(44)  https://doi.org/10.1002/APP.42727.
  25. 25.
    Wojciechowska P, Pietras P, Maciejewski H (2015) Adv Polym Tech 33:36–38Google Scholar
  26. 26.
    Du WN, Dai GC, Wang BC, Li ZJ, Li LX (2018) J Appl Polym Sci 135(20)  https://doi.org/10.1002/app.46264.
  27. 27.
    Ning CQ, Mehta J, Elghannam A (2005) J Mater Sci 16(4):355–360Google Scholar
  28. 28.
    Komsa-Penkova R, Koynova R, Kostov G, Tenchov BG (1996) Biochim Biophys Acta 1297(2):171–181Google Scholar
  29. 29.
    Neshati Z, Bahrami AR, Eshtiaghhosseini H, Matin MM, Housaindokht MR, Tabari T, Edalatmanesh MA (2012) Cytotechnology 64(5):485–495Google Scholar
  30. 30.
    Galia CR, Macedo CA, Rosito R, Mello TMD, Moreira LF (2008) Clinics 63(6):801–806Google Scholar
  31. 31.
    Bayraktar O, Malay O, Ozgarip Y, Batigã NA (2005) Eur J Pharm Biopharm 60(3):373–381Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduChina
  2. 2.Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan UniversityChengduChina
  3. 3.College of ChemistrySichuan UniversityChengduChina

Personalised recommendations