Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 2, pp 486–491 | Cite as

NiCo2O4 nanolayer cover on carbon cloth as anode materials for supercapacitors

  • Zhihong DengEmail author
  • Jianzhe Luo
  • Linyu Yang
  • Jun LiuEmail author
  • Kunjie Zhu
  • Jie Min
  • Guoyou WangEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 52 Downloads

Abstract

NiCo2O4 nano-layer covered on surface of carbon cloth for high-performance supercapacitors is successfully fabricated by a one-step route which only involved a modified sol–gel method. The binder-free electrode only with simple layer covering on carbon cloth displays outstanding pseudocapacitive behaviors in 2 M KOH, which exhibits high specific capacitances of 944.5 F g−1 at 1 A g−1 and 702.4 F g−1 at 20 A g−1after activation, as well as excellent cycling stability. The specific capacitance can still retain 859.5 F g−1 (91% retention) at a current density of 1 A g−1 after 3500 cycles.

A uniform ultrathin active substance NiCo2O4 supercapacitor electrode was formed directly on carbon cloth by modified sol–gel method. This supercapacitor electrode has high specific capacity and excellent rate performance.

Highlights

  • In this paper, we report the synthesis of nanostructured NiCo2O4@carbon cloth (NC@C) electrodes by sol–gel method.

  • The synthesis strategy involves a novel method:sol–gel method to fabricate binder-less electrode.

  • The synthesized NiCo2O4 nano layer uniformly covered on the surface of carbon nanofibers.

  • The synthesized NiCo2O4@carbon cloth electrode exhibits excellent electrochemical performance.

Keywords

Supercapacitor Sol–gel NiCo2O4 Binder-free 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant Nos. 51472271, 51772331).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yang Q, Wu J, Huang K, Lei M, Wang W, Tang S, Liu J (2016) Layer-by-layer self-assembly of graphene-like Co3O4 nanosheet/graphene hybrids: Towards high-performance anode materials for lithium-ion batteries. J Alloy Compd 667:29–35CrossRefGoogle Scholar
  2. 2.
    Yang L, Li H, Liu J, Lu Y, Li S, Min J, Lei M (2016) Effects of TiO2 phase on the performance of Li4Ti5O12 anode for lithium-ion batteries. J Alloy Compd 689:812–819CrossRefGoogle Scholar
  3. 3.
    Zhu K, Liu J, Li S, Liu L, Yang L, Liu S, Xie T (2017) Ultrafine cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for lithium ion batteries. Adv Mater Interfaces 4(19):1–8Google Scholar
  4. 4.
    Lu YB, Wu JB, Liu JB, Lei M, Tang SB, Lu PB, Yang QB (2015) Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 7(31):17433–17440CrossRefGoogle Scholar
  5. 5.
    Liu S, Zhou J, Cai Z, Fang G, Cai Y, Pan A, Liang S (2016) Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitors applications. J Mater Chem A 4:17838–17847CrossRefGoogle Scholar
  6. 6.
    Yu D, Yao J, Qiu L, Wang Y, Zhang X, Feng Y, Wang H (2014) In situ growth of Co3O4 nanoparticles on α-MnO2 nanotubes: a new hybrid for high-performance supercapacitors. J Mater Chem A 2(22):8465CrossRefGoogle Scholar
  7. 7.
    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2016) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28(11):3944–3950CrossRefGoogle Scholar
  8. 8.
    Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3(32):13059CrossRefGoogle Scholar
  9. 9.
    Nguyen VH, Shim JJ (2015) In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 166:302–309CrossRefGoogle Scholar
  10. 10.
    Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, Gencer Imer A (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep 6:23289CrossRefGoogle Scholar
  11. 11.
    Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays Adv Mater 29(32):1700804CrossRefGoogle Scholar
  12. 12.
    Wang P, Zhao Y-J, Wen L-X, Chen J-F, Lei Z-G (2014) Ultrasound–microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind Eng Chem Res 53:20116–20123CrossRefGoogle Scholar
  13. 13.
    Senthilkumar ST, Fu N, Liu Y, Wang Y, Zhou L, Huang H (2016) Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon. Electrochim Acta 211:411–419CrossRefGoogle Scholar
  14. 14.
    Wang L, Jiao X, Liu P, Ouyang Y, Xia X, Lei W, Hao Q (2018) Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors. Appl Surf Sci 427:174–181CrossRefGoogle Scholar
  15. 15.
    Godillot G, Taberna P-L, Daffos B, Simon P, Delmas C, Guerlou-Demourgues L (2016) High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide. J Power Sources 331:277–284CrossRefGoogle Scholar
  16. 16.
    Wu C, Lu X, Peng L, Xu K, Peng X, Huang J, Xie Y (2013) Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 4:2431CrossRefGoogle Scholar
  17. 17.
    Huang Z, Zhang Z, Qi X, Ren X, Xu G, Wan P, Zhang H (2016) Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8(27):13273–13279CrossRefGoogle Scholar
  18. 18.
    Xiao X, Ding T, Yuan L, Shen Y, Zhong Q, Zhang X, Wang ZL (2012) WO 3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2(11):1328–1332CrossRefGoogle Scholar
  19. 19.
    Min J, Liu J, Lei M, Wang W, Lu Y, Yang L, Su N (2016) Self-assembly of parallelly aligned NiO hierarchical nanostructures withultrathin nanosheet subunits for electrochemical supercapacitor applications. ACS Appl Mater Interfaces 8(1):780–791CrossRefGoogle Scholar
  20. 20.
    Heydari H, Gholivand MB (2017) Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors Ionics 23(6):1489–1498CrossRefGoogle Scholar
  21. 21.
    Niu H, Yang X, Jiang H, Zhou D, Li X, Zhang T, Qu F (2015) Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem A 00:1–13Google Scholar
  22. 22.
    Li S, Liu G, Liu J, Lu Y, Yang Q, Yang L-Y, Han M (2016) Carbon fiber cloth@VO2 (B): Excellent binder-free flexible electrodes with ultrahigh mass-loading. J Mater Chem A 4(17):6426–6432CrossRefGoogle Scholar
  23. 23.
    Luo Y, Zhang H, Wang L, Zhang M, Wang T (2015) Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors. Electrochim Acta 180:983–989CrossRefGoogle Scholar
  24. 24.
    Peng T, Yi H, Sun P, Jing Y, Wang R, Wang H, Wang X (2016) In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. J Mater Chem A 4(22):8888–8897CrossRefGoogle Scholar
  25. 25.
    Xia H, Xia Q, Lin B, Zhu J, Seo JK, Meng YS (2016) Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy 22:475–482CrossRefGoogle Scholar
  26. 26.
    Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25(7):976–979CrossRefGoogle Scholar
  27. 27.
    Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5(15):7405–7409CrossRefGoogle Scholar
  28. 28.
    Gao G, Wu H, Bin, Ding S, Liu LM, Lou XW (2015) Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11(7):804–808CrossRefGoogle Scholar
  29. 29.
    Zhao L, Wang L, Yu P, Tian C, Feng H, Diao Z, Fu H (2017) Hierarchical porous NiCo2O4 nanosheet arrays direct grown on carbon cloth with superior lithium storage performance Dalton Trans 46(14):4717CrossRefGoogle Scholar
  30. 30.
    Jabeen N, Xia Q, Yang M, Xia H (2016) Unique core-shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4support for high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 8(9):6093–6100CrossRefGoogle Scholar
  31. 31.
    Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim Acta 56(22):7517–7522CrossRefGoogle Scholar
  32. 32.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Tu J (2013) Hierarchical NiCo2O4 @ NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Applied. Mater Interfaces 5(17):8790–8795CrossRefGoogle Scholar
  33. 33.
    Shen L, Yu L, Yu XY, Zhang X, Lou XWD (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-Ion batteries and supercapacitors. Angew Chem-Int Ed 54(6):1868–1872CrossRefGoogle Scholar
  34. 34.
    Tong X, Chen S, Guo C, Xia X, Guo X-Y (2016) Mesoporous NiCo2O4 nanoplates on three-dimensional graphene foam as an efficient electrocatalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces 5:b10044Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.College of ScienceHunan University of TechnologyZhuzhouChina
  3. 3.Education Ministry Key Laboratory of Non-ferrous Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations