Journal of Sol-Gel Science and Technology

, Volume 88, Issue 3, pp 609–617 | Cite as

Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior

  • Khatereh Faaliyan
  • Hassan AbdoosEmail author
  • Ehsan Borhani
  • Seyyed Salman Seyyed Afghahi
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


In this study, a specific technique was used to quickly, easily, and single step, synthesize core-shell magnetite-silica nanoparticles by controlling the reaction conditions using the proper surfactant. In the first step, the magnetite nanoparticles were prepared by co-precipitation method and silica shell was immediately formed by the sol-gel process. Synthesis was performed at 80 °C with stirring at 12,000 rpm in an alkaline medium. The structural and morphological characteristics of core-shell nanoparticles were examined by XRD, TEM, SEM, and BET analyses. In addition, vibrating sample magnetometer (VSM) was used to evaluate the magnetic characteristics. XRD analysis confirmed the existence of both magnetite and silica phases in the final structure. TEM images showed the presence of nanocomposite particles with core-shell structure of 25 nm diameter. The mean core and shell size were estimated to be about 20 and 2.5 nm, respectively. A study of the magnetic characteristics showed super-paramagnetic behavior with 60 emu/g saturation magnetization (Ms). Due to the high ratio of core size to shell thickness, the magnetic saturation for the synthetized core-shell nanoparticles in this research was significant. In comparison to other multi-step synthesis techniques, the results obtained from this research confirmed the formation of magnetite-silica core-shell structures with the desired magnetic behavior in a quick and single-step process.


  • Simple, quick, and single step synthesis of magnetite-silica core-shell structure.

  • Single step preparation of magnetite nanoparticles by co-precipitation and silica shell by the sol-gel process.

  • High ratio of core size to shell thickness.

  • S-type hysteresis loop and Super-paramagnetic behavior of synthesized core-shell nanoparticles with high saturation magnetization (Ms).

  • Porous silica shell with significant surface area, pore size and internal volume of pores.


Single-step synthesis core-shell structure magnetite-silica magnetic characteristics co-precipitation sol-gel. 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ge J, Zhang Q, Zhang T, Yin Y (2008) Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. J Angew Chem 120:9056–9060CrossRefGoogle Scholar
  2. 2.
    Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W, Am J (2008) Mesoporous silica nano spheres as highly efficient MRI contrast agents. J Chem Soc 130:2154–2155CrossRefGoogle Scholar
  3. 3.
    Chen Z, Zhuo M, Xue F, Chen J, Xu Q (2009) Preparation of magnetically separable mesoporous silica microspheres with open pore systems in supercritical carbon dioxide. J Ind Eng Chem Res 48:3441–3445CrossRefGoogle Scholar
  4. 4.
    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  5. 5.
    Zhang M, Fang K, Lin M, Hou B, Zhong L, Zhu Y, Wei W, Sun Y (2013) Controlled fabrication of iron oxide/mesoporous silica core–shell nanostructures. J Phys Chem C 117:21529–21538CrossRefGoogle Scholar
  6. 6.
    Jin C, Wang Y, Wei H, Tang H, Liu X, Lu T, Wang J (2014) Magnetic iron oxide nanoparticles coated by hierarchically structured silica: a highly stable nanocomposite system and ideal catalyst support. J Mater Chem A 2(29):11202–11208CrossRefGoogle Scholar
  7. 7.
    Xia M, Chen C, Long M, Chen C, Cai W, Zhou B (2011) Magnetically separable mesoporous silica nanocomposite and its application in Fenton catalysis. J Microporous Mesoporous Mater 145:217–223CrossRefGoogle Scholar
  8. 8.
    Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916–8917CrossRefGoogle Scholar
  9. 9.
    Sen T, Bruce IJ (2009) Mesoporous silica-magnetite nanocomposites: fabrication, characterisation and applications in biosciences. J Microporous Mesoporous Mater 120:246–251CrossRefGoogle Scholar
  10. 10.
    Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413CrossRefGoogle Scholar
  11. 11.
    Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem 120(44):8566–8569CrossRefGoogle Scholar
  12. 12.
    Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J (2011) Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C 115:9926–9932CrossRefGoogle Scholar
  13. 13.
    Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M (2007) Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. J Chem Mater 19:3455–3463CrossRefGoogle Scholar
  14. 14.
    Knezevic NZ, Slowing II, Lin VSY (2012) Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles. J Chem Chem 77:48–55Google Scholar
  15. 15.
    Shen L, Li B, Qiao Y (2018) Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11(2):324–352CrossRefGoogle Scholar
  16. 16.
    Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D (2017) Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 &SiO2 core–shell nanoparticles. RSC Adv 7(15):8786–8797CrossRefGoogle Scholar
  17. 17.
    Colombo M, Carregal-Romero S, Casula MF, Gutierez L, Morales MP, Bohm IBJT, Heverhagen, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRefGoogle Scholar
  18. 18.
    Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009CrossRefGoogle Scholar
  19. 19.
    Vuong QL, Gillis P, Roch A, Gossuin Y (2017) Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(6):1468CrossRefGoogle Scholar
  20. 20.
    Wang S, Tang J, Zhao H, Wana J, Chen K (2014) Synthesis of magnetite silica core-shell nanoparticles via direct silicon oxidation. J Colloid Interface Sci 432:43–46CrossRefGoogle Scholar
  21. 21.
    Atta MA, El-Mahdy GA, Al-Lohedan AH, El-Saeed MA (2015) Preparation and application of crosslinked poly (sodium acrylate)-coated magnetite nanoparticles as corrosion inhibitors for carbonsteel alloy. J Mol 20:1244–1261CrossRefGoogle Scholar
  22. 22.
    Wang Y, Zhang M, Wang L, Li W, Zeng J, Xu J (2015) Synthesis of hierarchical nickel anchored on Fe3O4@SiO2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood. New J Chem 39:4876–4881CrossRefGoogle Scholar
  23. 23.
    Ghazanfari M, Johar F, Yazdani A (2014) Synthesis and characterization of Fe3O4@ Ag core-shell: structural, morphological, and magnetic properties. J Ultra Graine Nanostruct Mater 47(2):97–103Google Scholar
  24. 24.
    Qu H, Tong S, Song K et al. (2013) Controllable in-situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials. J Langmuir 29(33):10573–10578CrossRefGoogle Scholar
  25. 25.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Trewyn BG, Slowing II, Lin VS (2009) Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc 131(24):8398–8400CrossRefGoogle Scholar
  27. 27.
    Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. J Ann Biomed Eng 34(1):23–38CrossRefGoogle Scholar
  28. 28.
    Wu P, Zhu J, Xu Z (2004) Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv Funct Mater 14:345–351CrossRefGoogle Scholar
  29. 29.
    Knezˇevic´ NZˇ, Ruiz-Hernandez E, Hennink WE, Vallet-Regi M (2013) Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. J RSC Adv 3:9584–9593CrossRefGoogle Scholar
  30. 30.
    Niu D, Ma Z, Li Y, Shi J (2010) Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc 132:15144–15147CrossRefGoogle Scholar
  31. 31.
    Castillo SI, Ouhajji S, Fokker S, Erne BH, Schneijdenberg CT, Thies-Weesie DM, Philipse AP (2014) Silica cubes with tunable coating thickness and porosity: from hematite filled silica boxes to hollow silica bubbles. J Microporous Mesoporous Mater 195:75–86CrossRefGoogle Scholar
  32. 32.
    Yang Y, Liu J, Bai S, Li X, Yang Q (2013) Engineering the mesopores of Fe3O4@ mesosilica core–shell nanospheres through a solvothermal post‐treatment method. Chemistry– Asian J 8(3):582–587CrossRefGoogle Scholar
  33. 33.
    Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, Yang K, Lin J (2012) Magnetic Fe3O4@ mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci 376:312–321CrossRefGoogle Scholar
  34. 34.
    Wang Y, He J, Chen J, Ren L, Jiang B, Zhao J (2012) Synthesis of monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles. J ACS Appl Mater Interfaces 4(5):2735–2742CrossRefGoogle Scholar
  35. 35.
    Lin YS, Haynes CL (2009) Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chem Mater 21(17):3979–3986CrossRefGoogle Scholar
  36. 36.
    Zhang J, Li J, Razavi FS, Mumin AM (2011) One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core–shell nanoparticles. J Nanopart Res 13(5):1909–1916CrossRefGoogle Scholar
  37. 37.
    Mueller SP, Parker CP, Larsen SC (2015) One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites. J Microporous Mesoporous Mater 204:173–179CrossRefGoogle Scholar
  38. 38.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the ’Debye-Scherrer equation. Nat Nanotechnol 6(9):534CrossRefGoogle Scholar
  39. 39.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319.CrossRefGoogle Scholar
  40. 40.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380CrossRefGoogle Scholar
  41. 41.
    Hu C, Gao Z, Yang X (2006) Fabrication and magnetic properties of Fe3O4 octahedra. J Chem Phys Lett 429(4–6):513–517CrossRefGoogle Scholar
  42. 42.
    Cuiling REN et al. (2007) Preparation and properties of a new multifunctional material composed of superparamagnetic core and rhodamine B doped silica shell. Nanotechnology 18.34:345604Google Scholar
  43. 43.
    Naumov S (2009) Hysteresis phenomena in mesoporous materials, PhD Thesis, Department of Interface Physics, University of Leipzig, Leipzig, GermanyGoogle Scholar
  44. 44.
    Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM (2012) X‐space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24(28):3870–3877CrossRefGoogle Scholar
  45. 45.
    Pacchioni G, Skuja L, Griscom DL (eds) (2012) Defects in SiO2 and related dielectrics: science and technology, vol 2. Springer Science & Business Media, Dordrecht, NetherlandGoogle Scholar
  46. 46.
    Liu W, Ma J, Sun S, Chen K (2016) Gram-grade Cr (VI) adsorption on porous Fe@ SiO2 hierarchical microcapsules. J Water Process Eng 12:111–119CrossRefGoogle Scholar
  47. 47.
    Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H et al. (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4(1):143–152CrossRefGoogle Scholar
  48. 48.
    Wan J, Meng X, Liu E, Chen K (2010) Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation. Nanotechnology 21(23):235104CrossRefGoogle Scholar
  49. 49.
    Vojoudi H, Badiei A, Bahar S, Ziarani GM, Faridbod F, Ganjali MR (2017) A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J Magn Magn Mater 441:193–203CrossRefGoogle Scholar
  50. 50.
    Abbas M, Abdel-Hamed MO, Chen J (2017) Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres. Appl Phys A 123(12):775CrossRefGoogle Scholar
  51. 51.
    Esmaeilpour M, Javidi J, Zahmatkesh S (2016) One‐pot synthesis of 1‐and 5‐substituted 1H‐tetrazoles using 1, 4‐dihydroxyanthraquinone–copper (II) supported on superparamagnetic Fe3O4@ SiO2 magnetic porous nanospheres as a recyclable catalyst. Appl Organomet Chem 30(11):897–904CrossRefGoogle Scholar
  52. 52.
    Ta TKH, Trinh MT, Long NV, Nguyen TTM, Nguyen TLT, Thuoc TL, Tran-Van H (2016) Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1, 1′-carbonyldiimidazole for bio-applications. Colloids Surf A Physicochem Eng Asp 504:376–383CrossRefGoogle Scholar
  53. 53.
    Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanotechnology Department, Faculty of New Science and TechnologySemnan UniversitySemnanIran
  2. 2.Department of Materials Science and EngineeringImam Hossein UniversityTehranIran

Personalised recommendations