Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 225–233 | Cite as

Impact of the synthesis parameters on the microstructure of nano-structured LTO prepared by glycothermal routes and 7Li NMR structural investigations

  • Mateusz OdziomekEmail author
  • Frederic ChaputEmail author
  • Frederic Lerouge
  • Anna Rutkowska
  • Konrad Świerczek
  • Dany Carlier
  • Maciej Sitarz
  • Stephane Parola
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Abstract

The efficient materials for Li-ion battery electrodes require suitable composition, high-crystallinity and appropriate structuration. The last one is important to assure an efficient exchange of Li ions between the anode and electrolyte, thus enhancing the kinetics of electrochemical reactions. Therefore, the synthesis of well-crystallized nano-sized electrode materials exhibiting high surface area is of great interest. Herein, we explore the influence of the glycothermal synthesis variations on the structure and porosity of Li4Ti5O12. The utilized precursors and their concentration have a minor influence on crystallites size, but they could be used to control the porosity of assembled particles. The prepared Li-ion battery anode could be charged at low and high rate reaching the theoretical capacity of Li4Ti5O12. The material retains its peculiar porous structuration even after 1000 cycles at charging/discharging rate of 50C which contributes to the lack of capacity fading. Additionally, 7Li NMR is performed on one of synthesized nano-structured Li4Ti5O12 and compared with commercially available nanosized Li4Ti5O12 to understand the excellent electrochemical performance.

Glycothermal synthesis of lithium titanate, in 1,4-butanediol leads to crystalline NPs of 4-5 nm assembled into highly porous microstructures. Such structuration assures well-developed contact area between the electrode and an electrolyte in Li-ion batteries, which facilitates exchange of Li-ions. Therefore, the material shows excellent electrochemical performances. LTO characterized by different nanostructuration is obtained by varying the synthesis conditions (precursors type and concentration, temperature and co-solvent).

Highlights

  • Pure nanostructure Li4Ti5O12 was synthesized in varying glycothermal conditions using 1,4-butanediol as the solvent.

  • Simple adjustment of precursors and their concentration tuned the microstructure of the material without affecting the size of crystallites which oscillated around 4 nm.

  • Nano-scaling and proper microstructuration is an effective way to improve kinetics of electrochemical reactions due to the efficient exchange of Li ions between electrodes and electrolytes.

  • 7Li NMR was performed on synthesized material and commercial one in order to understand the peculiar electrochemical properties of the material.

Keywords

Li-ion batteries Lithium titanate Nanoparticles Glycothermal synthesis Polyols 

Notes

Acknowledgements

MO was supported primarily by the French Minister of Research through Ecole Normale Superieure and by the LABEX IMUST funding for PhD project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4844_MOESM1_ESM.docx (84 kb)
Supplementary Information

References

  1. 1.
    Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431–1435CrossRefGoogle Scholar
  2. 2.
    Zhao H (2015) Lithium Titanate-Based Anode Materials. In: Zhang Z, Zhang S (eds) Rechargeable batteries. Green energy and technolology, Springer, Heidelberg, pp 157–187CrossRefGoogle Scholar
  3. 3.
    Pistoia G (2014) Lithium-ion batteries advances and applications. Elsevier, Amsterdam.Google Scholar
  4. 4.
    Naoi K, Naoi W, Aoyagi S, Miyamoto JI, Kamino T (2013) Acc Chem Res 46:1075–1083CrossRefGoogle Scholar
  5. 5.
    Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T, Wang Z, Xu Y, Hu L (2016) Adv Mater 28:2587–2594CrossRefGoogle Scholar
  6. 6.
    Wang J, Shen L, Li H, Ding B, Nie P, Dou H, Zhang X (2014) J Alloy Compd 587:171–176CrossRefGoogle Scholar
  7. 7.
    Wang F, Luo L, Du J, Guo L, Li B, Ding Y (2015) RSC Adv 5:46359–46365CrossRefGoogle Scholar
  8. 8.
    Shi L, Hu X, Huang Y (2014) Nanopart Res 16:2332–2342CrossRefGoogle Scholar
  9. 9.
    Chang C-M, Chen Y-C, Ma W-L, Chen-Yang YW (2015) RSC Adv 5:49248–49256CrossRefGoogle Scholar
  10. 10.
    Wang C, Wang S, Tang L, He YB, Gan L, Li J, Du H, Li B, Lin Z, Kang F (2016) Nano Energy 21:133–144CrossRefGoogle Scholar
  11. 11.
    Kashkooli AG, Lui G, Farhad S, Lee DU, Feng K, Yu A, Chen Z (2016) Electrochim Acta 196:33–40CrossRefGoogle Scholar
  12. 12.
    Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S (2012) J Power Sources 219:217–222CrossRefGoogle Scholar
  13. 13.
    Lu X, Gu L, Hu YS, Chiu HC, Li H, Demopoulos GP, Chen L (2015) J Am Chem Soc 137:1581–1586CrossRefGoogle Scholar
  14. 14.
    Arico SA, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nat Mater 4:366–377CrossRefGoogle Scholar
  15. 15.
    Chou SL, Wang JZ, Liu HK, Dou SX (2011) J Phys Chem C 115:16220–16227CrossRefGoogle Scholar
  16. 16.
    Lee SC, Lee SM, Lee JW, Lee JB, Lee SM, Han SS, Lee HC, Kim HJ (2009) J Phys Chem C 113:18420–18423CrossRefGoogle Scholar
  17. 17.
    Song K, Seo DH, Jo MR, II Kim Y, Kang K, Kang YM (2014) J Phys Chem Lett 5:1368–1373CrossRefGoogle Scholar
  18. 18.
    Han SY, Young Kim I, Hwang SJ (2012) J Phys Chem Solids 73:1444–1447CrossRefGoogle Scholar
  19. 19.
    Ge H, Hao T, Zhang B, Chen L, Cui L, Song XM (2016) Electrochim Acta 211:119–125CrossRefGoogle Scholar
  20. 20.
    Odziomek M, Chaput F, Lerouge F, Sitarz M, Parola S (2017) J Mater Chem C 5:12561–12570CrossRefGoogle Scholar
  21. 21.
    Dong H, Chen Y-C, Feldmann C (2015) Green Chem 17:4107–4132CrossRefGoogle Scholar
  22. 22.
    Odziomek M, Chaput F, Rutkowska A, Świerczek K, Olszewska D, Sitarz M, Lerouge F, Parola S (2017) Nat Commun 8:15636CrossRefGoogle Scholar
  23. 23.
    Niederberger M, Pinna N (2009) Metal Oxide Nanoparticles in Organic Solvents. Springer-Verlag, LondonCrossRefGoogle Scholar
  24. 24.
    Deshmukh R, Niederberger M (2017) Chem Eur J 23:8542–8570CrossRefGoogle Scholar
  25. 25.
    Niederberger M (2007) Acc Chem Res 40:793–800CrossRefGoogle Scholar
  26. 26.
    Wagemaker M, Simon DR, Kelder EM, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R, Mulder FM (2006) Adv Mater 18:3169–3173CrossRefGoogle Scholar
  27. 27.
    Schmidt W, Bottke P, Sternad M, Gollob P, Hennige V, Wilkening M (2015) Chem Mater 27:1740–1750CrossRefGoogle Scholar
  28. 28.
    Schmidt W, Wilkening M (2016) J Phys Chem C 120:11372–11381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mateusz Odziomek
    • 1
    • 2
    Email author
  • Frederic Chaput
    • 1
    Email author
  • Frederic Lerouge
    • 1
  • Anna Rutkowska
    • 3
  • Konrad Świerczek
    • 3
  • Dany Carlier
    • 4
  • Maciej Sitarz
    • 2
  • Stephane Parola
    • 1
  1. 1.Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de ChimieLyonFrance
  2. 2.Department of Chemistry of Silicates and MacromoleculesAGH University of Science and Technology, Faculty of Materials Science and CeramicsKrakowPoland
  3. 3.Department of Hydrogen EnergyAGH University of Science and Technology, Faculty of Energy and FuelsKrakowPoland
  4. 4.CNRSUniv. Bordeaux, Bordeaux INP, ICMCB UMR 5026PessacFrance

Personalised recommendations