Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 196–204 | Cite as

SiO2–TiO2 multilayer via electrochemical deposition: characterization of reflection and refractive index

  • Gianmarco GiordanoEmail author
  • Christian Durante
  • Niccolò Michieli
  • Armando Gennaro
  • Alessandro Martucci
  • Massimo Guglielmi
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The deposition of silica and titania films by electro-assisted technique, with the objective to obtain a multilayer structure, was studied. Tetraethyl orthosilicate/methyl triethoxysilane (TEOS/MTES) mixture and titanium(IV) isopropoxide (TTIP) were used as precursors. The films were deposited on both bare stainless steel and indium tin oxide (ITO) substrates and a total thickness of about 550 nm was obtained for the four-layer structure. No heat treatment was performed before optical characterizations.

Optical characterization was performed by ellipsometry on the single layers and on the multilayer coatings. The refractive index of silica and titania single layer, deposited on different substrates by electro-assisted technique and conventional dip coating, was measured in order to elucidate the influence of the substrates and deposition technique on the densification of the coatings. Moreover, the reflectance of the multilayer structure was also measured to demonstrate the possible use of the multilayer systems as Bragg reflector.


  • SiO2–TiO2 multilayer deposition via electrochemistry without heat treatment.

  • Characterization of refractive index of SiO2 and TiO2 single layers on different substrates.

  • Thin films intercalation of low and high refractive index was obtained.

  • A multilayer system as Bragg reflector was developed.


Electrodeposition Optical layers Multilayer Nanocomposite 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yoldas BE, O’Keeffe TW (1979) Antireflective coatings applied from metal-organic derived liquid precursors. Appl Opt 18:3133–3138CrossRefGoogle Scholar
  2. 2.
    Thomas IM (1986) Optical coatings by the sol–gel process. Opt News 8:18–22CrossRefGoogle Scholar
  3. 3.
    Thomas IM (1987) Single-layer TiO2 and multilayer TiO2–SiO2 optical coatings prepared from colloidal suspensions. Appl Opt 26:4688–4691CrossRefGoogle Scholar
  4. 4.
    Thomas IM (1989) Single layer Al2O3H2O and multilayer Al2O3H2O–SiO2 optical coatings prepared from colloidal suspensions. Appl Opt 28:4013–4016CrossRefGoogle Scholar
  5. 5.
    Lien S-Y, Wuu D-S, Yeh W-C, Liu J-C (2006) Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 90:2710–2719CrossRefGoogle Scholar
  6. 6.
    Mazur M, Wojcieszak D, Domaradzki R, Kaczmarek D, Song S, Placido F (2013) TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto-Electron Rev 21:233–238CrossRefGoogle Scholar
  7. 7.
    Xi J-Q, Schubert M-F, Kim JK, Schubert EF, Chen M, Lin S-Y, Liu W, Smart JA (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature 1:176–179Google Scholar
  8. 8.
    Liu L, Mandler D (2013) Electro-assist deposition of binary sol–gel films with graded structure. Electrochim Acta 102:212–218CrossRefGoogle Scholar
  9. 9.
    Curkovic L, Curkovic HO, Salopek S, Renjo MM, Segota S (2013) Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corros Sci 77:176–184CrossRefGoogle Scholar
  10. 10.
    Yakovlev AV, Milichko VA, Pidko EA, Vinogradov VV, Vinogradov AV (2016) Inkjet printing of TiO2/AlOOH heterostructures for the formation of interference color images with high optical visibility. Sci Rep 6:37090CrossRefGoogle Scholar
  11. 11.
    Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107CrossRefGoogle Scholar
  12. 12.
    Wäckelgård E, Mattsson A, Bartali R, Gerosa R, Gottardi G, Gustavsson F, Laidani N, Micheli V, Primetzhofer D, Rivolta B (2015) Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures. Sol Energy Mater Sol Cells 133:180–193CrossRefGoogle Scholar
  13. 13.
    Ramasamy P, Kim J (2014) Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells. Chem Commun 50:879CrossRefGoogle Scholar
  14. 14.
    Shacham R, Avnir D, Mandler D (1999) Electrodeposition of methylated sol–gel films on conducting surfaces. Adv Mater 11:384–388CrossRefGoogle Scholar
  15. 15.
    Raveh M, Liu L, Mandler D (2013) Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Phys Chem Chem Phys 15:10876–10884CrossRefGoogle Scholar
  16. 16.
    Okner R, Favaro G, Radko A, Domb AJ, Mandler D (2010) Electrochemical codeposition of sol–gel films on stainless steel: controlling the chemical and physical coating properties of biomedical implants. Phys Chem Chem Phys 12:15265–15273CrossRefGoogle Scholar
  17. 17.
    Nadzhafova O, Etienne M, Walcarius A (2007) Direct electrochemistry of hemoglobin and glucose oxidase in electrodeposited sol–gel silica thin films on glassy carbon. Electrochem Commun 9:1189–1195CrossRefGoogle Scholar
  18. 18.
    Shacham R, Avnir D, Mandler D (2010) Pattern recognition in oxides thin-film electrodeposition: printed circuits. C R Chem 13:237–241CrossRefGoogle Scholar
  19. 19.
    Maghear A, Etienne M, Tertis M, Sandulescu R, Walcarius A (2013) Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochim Acta 112:333–341CrossRefGoogle Scholar
  20. 20.
    Farghaly AA, Collinson MM (2014) Electroassisted codeposition of sol–gel derived silica nanocomposite directs the fabrication of coral-like nanostructured porous gold. Langmuir 30:5276–5286CrossRefGoogle Scholar
  21. 21.
    Toledano R, Shacham R, Avnir D, Mandler D (2008) Electrochemical co-deposition of sol–gel/metal thin nanocomposite films. Chem Mater 20:4276–4283CrossRefGoogle Scholar
  22. 22.
    Vila N, Walcarius A (2015) Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte. Electrochim Acta 179:304–314CrossRefGoogle Scholar
  23. 23.
    Vila N, Ghanbaja J, Walcarius A (2016) Clickable bifunctional and vertically aligned mesoporous silica films. Adv Mater Interfaces 3:1500440CrossRefGoogle Scholar
  24. 24.
    Giordano G, Durante C, Gennaro A, Guglielmi M (2016) Multilayer deposition of silica sol–gel films by electrochemical assisted techniques. J Phys Chem C 120:28820–28824CrossRefGoogle Scholar
  25. 25.
    Giordano G, Vila N, Aubert E, Ghambaja J, Walcarius A (2017) Multi-layered, vertically-aligned and functionalized mesoporous silica films by sequential electrochemically assisted self-assembly. Electrochim Acta 237:227–236CrossRefGoogle Scholar
  26. 26.
    Shacham R, Avnir D, Mandler D (2004) Electrodeposition of dye-doped titania thin films. J Sol-Gel Sci Technol 31:329–334CrossRefGoogle Scholar
  27. 27.
    Li M, Yang Y-Q, Liu L, Hu J-M, Zhang J-Q (2010) Electro-assisted preparation of dodecyltrimethoxysilane/TiO2 composite films for corrosion protection of AA2024-T3 (aluminum alloy). Electrochim Acta 55:3008–3014CrossRefGoogle Scholar
  28. 28.
    Giordano G, Durante C, Gennaro A, Guglielmi M (2015) Electrochemical deposition of silica sol–gel films on stainless steel: preliminary analysis of key variables. J Sol-Gel Sci Technol 76:233–240CrossRefGoogle Scholar
  29. 29.
    Yamagata S (1992) Effects of OH-group on distribution of refractive index in silica glass. J Ceram Soc Jpn 100:337–341CrossRefGoogle Scholar
  30. 30.
    Kitamura N, Fukumi K, Nishii J, Ohno N (2007) Relationship between refractive index and density of synthetic silica glasses. J Appl Phys 101:123533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria IndustrialeUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Scienze ChimicheUniversità di PadovaPadovaItaly
  3. 3.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly

Personalised recommendations