Journal of Sol-Gel Science and Technology

, Volume 88, Issue 3, pp 584–592 | Cite as

Investigations on the phase transition of Mn-doped BaTiO3 multifunctional ferroelectric ceramics through Raman, dielectric, and magnetic studies

  • K. Madhan
  • R. Thiyagarajan
  • C. Jagadeeshwaran
  • A. Paul Blessington Selvadurai
  • V. Pazhanivelu
  • K. Aravinth
  • Wenge Yang
  • R. MurugarajEmail author
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric


BaTiO3 (BTO) and BaTi1−xMnxO3 (x = 0.25, 0.50, 0.75 mol%) ceramic materials have been prepared by the sol–gel combustion method. X-ray diffraction (XRD) has been carried out to characterize the phase purity and crystal structure of the prepared compounds, and all XRD patterns suggest tetragonal structure with the phase group of P4mm. The variation in the estimated lattice parameters confirms the incorporation of Mn atoms at Ti site of BTO. Raman spectroscopy studies under various temperatures suggest a phase transition from tetragonal to cubic phase at ~433 K, identified by a distinct Raman mode at 308 cm−1. As Raman modes are getting softened by Mn doping, phase transition temperature of the Mn-doped compounds is significantly decreased from 473 K (x = 0%) to 433 K (x = 0.75%). Dielectric properties such as permittivity and dielectric loss as the function of frequency under various temperatures have two distinct dielectric anomalies (i) at 393 K associated to tetragonal to cubic phase transition and (ii) at 550 K due to oxygen vacancy defect in the samples. Observation of weak ferromagnetism at 2, 300, and 400 K in the M (H) and ZFC-FC curve, suppose its origin due to an intriguing exchange interaction between Mn and oxygen vacancies.


  • Mn-doped BaTiO3 is prepared by sol–gel combustion method.

  • The structural phase transition from tetragonal to cubic phase occurs at ~433 K.

  • Phase transition associated with a distinct Raman mode at ~308 cm−1.

  • M–H loop shows weak ferromagnetism with intriguing exchange interactions.


Sol–gel combustion Phase transition Raman and dielectric spectroscopy Ferromagnetism 


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hayashi H, Nakamura T, Ebina T (2013) Journal of physics and chemistry of solids in-situ raman spectroscopy of BaTiO3 particles for tetragonal—cubic transformation. J Phys Chem Solids 74:957–962CrossRefGoogle Scholar
  2. 2.
    Tsung Y, Fu S, Horng M, Ru Y (2018) Effect of MgO addition on the microstructure and dielectric properties of BaTiO3 ceramics. Ceram Int 44:3531–3535CrossRefGoogle Scholar
  3. 3.
    Lu D, Yuan L, Liang W, Zhu Z (2016) Characterization of oxygen vacancy defects in Ba1-xCaxTiO3 insulating ceramics using electron paramagnetic resonance technique. J Appl Phys 55:011501CrossRefGoogle Scholar
  4. 4.
    Rani A, Kolte J, Gopalan P (2015) Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titanate. Ceram Int 41:14057–14063CrossRefGoogle Scholar
  5. 5.
    Verma KC, Kotnala RK (2016) Multiferroic approach for Cr, Mn, Fe, Co, Ni, Cu substituted BaTiO3 nanoparticles. Mater Res Express 3:055006CrossRefGoogle Scholar
  6. 6.
    Shuai Y, Zhou S, Bürger D, Reuther H, Skorupa I (2011) Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J Appl Phys 109:084105CrossRefGoogle Scholar
  7. 7.
    Phan T, Zhang P, Grinting D, Yu SC, Nghia NX (2012) Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. J Appl Phys 112:013909CrossRefGoogle Scholar
  8. 8.
    Guo YY, Zhao Y, Zhang HG, Zhang N (2017) Ceramics during ferroelectric-ferroelectric transition cycle. J Alloy Comp 696:814–819CrossRefGoogle Scholar
  9. 9.
    Dang NV, Phan T, Thanh TD, Lam VD, Hong LV (2012) Structural phase separation and optical and magnetic properties of BaTi12xMnxO3 multiferroics. J Appl Phys 111:113913CrossRefGoogle Scholar
  10. 10.
    Zhao X, Chen W, Zhang L, Zhong L (2015) The effect of the bipolar field on the aging behavior and the associated properties of the Mn-doped BaTiO3 ceramics. J Alloy Comp 618:707–711CrossRefGoogle Scholar
  11. 11.
    Zhao X, Chen W, Zhang L (2015) Effect of fabrication routes on the microstructure, the dielectric and ferroelectric properties of the Mn-doped BaTiO3 ceramics. Appl Phys A 118:931–938CrossRefGoogle Scholar
  12. 12.
    Dang NV, Dang NT, Ho TA, Tran N, Phan TL (2018) Electronic structure and magnetic properties of BaTi1-xMnxO3. Curr Appl Phys 18:150–154CrossRefGoogle Scholar
  13. 13.
    Rath MK (2007) Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders. Mater Lett 61:4821–4823CrossRefGoogle Scholar
  14. 14.
    Chen W, Zhao X, Sun J, Zhang L, Zhong L (2016) Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J Alloy Comp 670:48–54CrossRefGoogle Scholar
  15. 15.
    Yadav P, Sharma S, Lalla NP (2017) Effect of magnetic ion (Mn) doping on structural, ferroelectric and magnetic. Ceram Int 43:13339–13344CrossRefGoogle Scholar
  16. 16.
    Ba M, Tio C, Sakamoto W, Noritake K, Ichikawa H, Hayashi K, Yogo T (2017) Fabrication and properties of nonreducible lead-free piezoelectric. Ceram Int 43:S166–S171CrossRefGoogle Scholar
  17. 17.
    Wang X, Gu M, Yang B, Zhu S, Cao W (2003) Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron Eng 66:855–859CrossRefGoogle Scholar
  18. 18.
    Khirade PP, Birajdar SD, Raut AV, Jadhav KM (2016) Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol–gel auto combustion: Influence of iron on physical properties. Ceram Int 42:12441–12451CrossRefGoogle Scholar
  19. 19.
    Daniel PJ, Lin JG (2013) Investigation of optimal growth conditions of La0.7Sr0.3MnO3–Bi2Sr2Ca1Cu2O8 hetero structures. J Am Ceram Soc 484:481–484Google Scholar
  20. 20.
    Lee S, Randall CA (2008) A modified Vegard’ s law for multisite occupancy of Ca in BaTiO3–CaTiO3 solid solutions. Appl Phys Lett 92:111904CrossRefGoogle Scholar
  21. 21.
    El Marssi M, Le Marrec F, Lukyanchuk IA, Karkut MG (2013) Ferroelectric transition in an epitaxial barium titanate thin film: Raman spectroscopy and X-ray diffraction study. J Appl Phys 94:3307CrossRefGoogle Scholar
  22. 22.
    Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Seshadri R, Brus LE, Steigerwald ML, Barbara S, Laboratories B, Mountain AV, Hill M (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J Am Chem Soc 130:6955–6963CrossRefGoogle Scholar
  23. 23.
    Woldu T, Raneesh B, Reddy MVR, Kalarikkal N (2016) Grain size dependent magnetoelectric coupling of BaTiO3 nanoparticles. RSC Adv. CrossRefGoogle Scholar
  24. 24.
    Soumya Rajan PM, Mohammed G, Chandrasekaran G (2015) Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3. J Alloy Comp 656:98–109CrossRefGoogle Scholar
  25. 25.
    Chihaoui S, Chaker C, Khemakhem H (2017) X-ray diffraction, dielectric and Raman studies of the Ba1−xNaxTi1−x(Nb1−ySby)xO3 ceramics. Ceram Int 43:8938–8943CrossRefGoogle Scholar
  26. 26.
    Gulwade D, Gopalan P (2008) Diffuse phase transition in La and Ga doped barium titanate. Solid State Commun 146:340–344CrossRefGoogle Scholar
  27. 27.
    Kaddoussi H, Abdelmoula N, Gagou Y, Mezzane D, Khemakhem H, Elmarssi M (2014) X-ray diffraction, dielectric and Raman spectroscopy studies. Ceram Int 40:10255–10261CrossRefGoogle Scholar
  28. 28.
    Xiao CJ, Chi ZH, Zhang WW, Li FY, Feng SM, Jin CQ, Wang XH, Deng XY, Li LT (2007) The phase transitions and ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering. J Phys Chem Solids 68:311–314CrossRefGoogle Scholar
  29. 29.
    Sareecha N, Shah WA, Anis-ur-rehman M, Mirza ML, Awan MS (2017) Electrical investigations of BaTiO3 ceramics with Ba/Ti contents under influence of temperature. Solid State Ion 303:16–23CrossRefGoogle Scholar
  30. 30.
    Kaur M, Uniyal P (2016) Investigation on the effect of Ti doping on dielectric, impedance and magnetic properties of Ba2+-substituted BiFeO3 ceramics. J Mater Sci. Google Scholar
  31. 31.
    Bhowmik RN (2012) by solid state sintering, mechanical alloying and chemical routes. Ceram Int 38:5069–5080CrossRefGoogle Scholar
  32. 32.
    Ca B, Sn T, Mizouri F, Kallel I, Abdelmoula N, Mezzane D, Khemakhem H (2018) Structural dielectric and magnetic properties of (1-x)BiFeO3-xBa0.9Ca0.1Ti0.9Sn0.1O3 ceramics. J Alloy Comp 731:458–464CrossRefGoogle Scholar
  33. 33.
    Bersuker IB (2012) Pseudo Jahn–Teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: the d0-d10 problem. PRL 108:137202CrossRefGoogle Scholar
  34. 34.
    Polinger V, Garcia-fernandez P, Bersuker IB (2015) Pseudo Jahn–Teller origin of ferroelectric instability in BaTiO3 type perovskites: the Green function approach and beyond. Phys B 457:296–309CrossRefGoogle Scholar
  35. 35.
    Bourguiba F, Dhahri A, Rhouma FIH, Mnefgui S, Dhahri J, Taibi K, Hlil EK (2016) Effect of iron and tungsten substitution on the dielectric response and phase transformations of BaTiO3 pervoskite ceramic. J Alloy Comp 686:675–683CrossRefGoogle Scholar
  36. 36.
    Pazhanivelu V, Paul Blessington Selvadurai A, Murugaraj R (2014) Effect of Ni doping on structural, morphological, optical and magnetic properties of Zn1−xNixO dilute magnetic semiconductors. J Supercond Nov Magn 27:1737–1742CrossRefGoogle Scholar
  37. 37.
    Saravanakumar M, Agilan S, Muthukumarasamy N, Rukkumani V, Marusamy A, Ranjith A (2015) Effect of Mn doping on the structural, optical and magnetic properties of SnO2 nanoparticles. Acta Phys Pol A 127:1656–1660CrossRefGoogle Scholar
  38. 38.
    Phan T, Zhang P, Yang DS, Thanh TD, Tuan DA, Yu SC (2013) Origin of ferromagnetism in BaTiO3 nanoparticles prepared by mechanical milling. J Appl Phys 113:17E305CrossRefGoogle Scholar
  39. 39.
    Bahadur N, Pasricha R, Chand S, Kotnala RK (2012) Effect of Ni doping on the microstructure and high Curie temperature ferromagnetism in sol–gel derived titania powders. Mater Chem Phys 133:471–479CrossRefGoogle Scholar
  40. 40.
    Basith MA, Islam MA (2017) Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts. Mater Res Express 4:075012CrossRefGoogle Scholar
  41. 41.
    Gheisari M, Mozafari M, Niyaifar M, Amighian J, Soleimani R (2013) Observation of small exchange bias in defect Wüstite (Fe0.93O) nanoparticles. J Supercond Nov Magn 26:237–242CrossRefGoogle Scholar
  42. 42.
    Mangalam RVK, Mahuya Chakrabrati, Sanya D, Chakrabati A, Sundaresan A (2009) Identifying defects in multiferroic nanocrystalline BaTiO3 by positron. J Phys Condens Matter 21:445902CrossRefGoogle Scholar
  43. 43.
    Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45(2012):195001CrossRefGoogle Scholar
  44. 44.
    Bhowmik RN, Vijayasri G, Ranganathan R (2014) Structural characterization and ferromagnetic properties in Ga3+ doped Fe2O3 system prepared by coprecipitation route and vacuum annealing. J Appl Phys 116:123905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, MIT CampusAnna UniversityChennaiIndia
  2. 2.Center for High Pressure Science and Technology Advanced Research (HPSTAR)ShanghaiPeople’s Republic of China
  3. 3.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  4. 4.SSN Research CenterSSN College of EngineeringKalavakkamIndia
  5. 5.Center for the Study of Matter at Extreme ConditionsFlorida International UniversityMiamiUSA

Personalised recommendations