Intragranular carbon nanotubes in alumina-based composites for reinforced ceramics

  • Luis Esquivias
  • Pedro Rivero-Antúnez
  • Camilo Zamora-Ledezma
  • Arturo Domínguez-Rodríguez
  • Víctor Morales-FlórezEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The traditional methods for the synthesis of reinforced alumina-based matrix composites with carbon nanotubes (CNTs) have presented serious difficulties for obtaining well-dispersed and homogeneously distributed CNTs within the matrix. Besides this, the CNTs are typically found in the grain boundaries of the matrix. These features involve a non-optimal reinforcement role of the CNTs. With the aim of maximizing the efficiency of the reinforcement of the CNT, this work reconsiders a sol-gel-based procedure for ceramic composite fabrication with a two fold objective: to achieve a good dispersion of the CNTs and to promote the intragranular location of the CNTs. The mixing of precursors and CNTs has been developed under the presence of high-power ultrasounds, followed by a rapid in-situ gelation that “froze” the nanotubes inside the gel. The chemical and physical relationships between the ceramic matrix and the embedded reinforcing phase have been researched. First results confirm the success of the synthesis procedure for the preparation of alumina-based composite powders starting from a commercial boehmite sol and multiwalled carbon nanotubes. X-ray diffraction and Raman analyses confirmed the formation of the α-Al2O3 and the persistence of the non-damaged nanotube structure. N2 physisorption and electron microscopy were used to check the evolution of the nanostructure and to confirm the presence of intragranular carbon nanotube within the polycrystalline powder. Therefore, the alumina-based composite powder prepared by this new procedure is a good candidate for the preparation of reinforced ceramic matrix composites.

The new synthesis process based on the controlled gelation of boehmite and MWCNT achieves the intragranular location of the nanotubes inside the alumina grains.


  • Boehmite sol was considered for α-Al2O3-based MWCNT composite powders.

  • The average radii of the synthesized alumina grains are ~200 nm.

  • The structure of the MWCNT is preserved throughout the synthesis process.

  • A good and homogeneous dispersion of the MWCNT is achieved.

  • The intragranular MWCNT can be found inside the alumina grains.


Boehmite MWCNT α-Al2O3 Ceramic matrix composite Intragranular reinforcement 



Project P12-FQM-1079 and funding support to FQM163 from Junta de Andalucia are acknowledged. V- M.-F. thanks the grant from V Plan Propio de Investigación de la Universidad de Sevilla. Fco. Luis Cumbrera and R. Cano-Crespo are also acknowledged for their help on XRD diffraction patterns and sample preparation. The help from the technical staff from the CITIUS is acknowledged. The authors would like to thank the work by the National Institutes of Health, USA for the development of the ImageJ ( software. Comercial Química Massó is also acknowledged for supplying the boehmite precursor Nyacol®.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Robinson AL (1987) An oxygen key to the new superconductors Science 236:1063–1065. CrossRefGoogle Scholar
  2. 2.
    Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications Science 296:280–284. CrossRefGoogle Scholar
  3. 3.
    Okada A (2008) Automotive and industrial applications of structural ceramics in Japan J Eur Ceram Soc 28:1097–1104. CrossRefGoogle Scholar
  4. 4.
    Ko FK (1989) Preform fiber architecture for ceramic matrix composites Am Ceram Soc Bull 68:401–414Google Scholar
  5. 5.
    De Arellano-López AR, Domínguez-Rodríguez A, Goretta KC, Routbort JL (1993) Plastic deformation mechanisms in SiC-Whisker-Reinforced alumina J Am Ceram Soc 76:1425–1432. CrossRefGoogle Scholar
  6. 6.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications Adv Mater 22:3906–3924. CrossRefGoogle Scholar
  7. 7.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2010) On the microstructure of single wall carbon nanotubes reinforced ceramic matrix composites J Mater Sci 45:2258–2263. CrossRefGoogle Scholar
  8. 8.
    Zapata-Solvas E, Gómez-García D, Poyato R, Lee Z, Castillo-Rodríguez M, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2010) Microstructural effects on the creep deformation of alumina/single-wall carbon nanotubes composites J Am Ceram Soc 93:2042–2047. CrossRefGoogle Scholar
  9. 9.
    Castillo-Rodríguez M, Muñoz A, Morales-Rodríguez A, Poyato R, Gallardo-López Á, Domínguez-Rodríguez A (2015) Influence of the processing route on the carbon nanotubes dispersion and creep resistance of 3YTZP/SWCNTs nanocomposites J Am Ceram Soc 98:645–653. CrossRefGoogle Scholar
  10. 10.
    Castillo-Rodríguez M, Muñoz A, Domínguez-Rodríguez A (2016) High-temperature deformation mechanisms in monolithic 3ytzp and 3ytzp containing single-walled carbon nanotubes J Am Ceram Soc 99:286–292. CrossRefGoogle Scholar
  11. 11.
    Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhý I, Reece MJ (2013) Graphene reinforced alumina nano-composites Carbon N Y 64:359–369. CrossRefGoogle Scholar
  12. 12.
    Cano-Crespo R, Malmal Moshtaghioun B, Gómez-García D, Domínguez-Rodríguez A, Moreno R (2017) High-temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering Ceram Int 43:7136–7141. CrossRefGoogle Scholar
  13. 13.
    Wozniak J, Jastrzębska A, Cygan T, Olszyna A (2017) Surface modification of graphene oxide nanoplatelets and its influence on mechanical properties of alumina matrix composites J Eur Ceram Soc 37:1587–1592. CrossRefGoogle Scholar
  14. 14.
    Gutiérrez-Mora F, Cano-Crespo R, Rincón A, Moreno R, Domínguez-Rodríguez A (2017) Friction and wear behavior of alumina-based graphene and CNFs composites J Eur Ceram Soc 37:3805–3812. CrossRefGoogle Scholar
  15. 15.
    Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites Nat Mater 3:539–544. CrossRefGoogle Scholar
  16. 16.
    Lee K, Mo CB, Park SB, Hong SH (2011) Mechanical and electrical properties of multiwalled cnt-alumina nanocomposites prepared by a sequential two-step processing of ultrasonic spray pyrolysis and spark plasma sintering J Am Ceram Soc 94:3774–3779. CrossRefGoogle Scholar
  17. 17.
    Ahmad I, Yazdani B, Zhu Y (2015) Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites Nanomaterials 5:90–114. CrossRefGoogle Scholar
  18. 18.
    Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double- and single-walled carbon nanotube-reinforced alumina composites: Is it justifiable the effort to reinforce them? Ceram Int 42:2054–2062. CrossRefGoogle Scholar
  19. 19.
    Torres-Canas FJ, Blanc C, Zamora-Ledezma C, Silva P, Anglaret E (2015) Dispersion and individualization of SWNT in surfactant-free suspensions and composites of hydrosoluble polymers J Phys Chem C 119:703–709. CrossRefGoogle Scholar
  20. 20.
    Lee B, Lee D, Lee JH, Ryu HJ, Hong SH (2016) Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites Sci Rep 6:27609. CrossRefGoogle Scholar
  21. 21.
    Chiang Y-M, Birnie DP, Kingery WD (1997) Physical ceramics: Principles for Ceramic Science and Engineering. J. Wiley & Sons, New Jersey USAGoogle Scholar
  22. 22.
    Satam MK, Gurnani L, Vishwanathe S, Mukhopadhyay A (2016) Development of J Am Ceram Soc 99:2905–2908. CrossRefGoogle Scholar
  23. 23.
    Sun J, Gao L, Iwasa M, Nakayama T, Niihara K (2005) Failure investigation of carbon nanotube/3Y-TZP nanocomposites Ceram Int 31:1131–1134. CrossRefGoogle Scholar
  24. 24.
    Saleh AKT, Gupta V (2012) Characterization of the chemical bonding between Al2O3 and nanotube in MWCNT/ Al2O3 nanocomposite Curr Nanosci 8:739–743. CrossRefGoogle Scholar
  25. 25.
    Bepete G, Anglaret E, Ortolani L, Morandi V, Huang K, Pénicaud A, Drummond C (2017) Surfactant-free single-layer graphene in water Nat Chem 9:347–352. CrossRefGoogle Scholar
  26. 26.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites J Eur Ceram Soc 32:3001–3020CrossRefGoogle Scholar
  27. 27.
    Yoldas BE (1975) A transparent porous alumina Ceram Bull 54:289–290Google Scholar
  28. 28.
    Barrera-Solano C, Esquivias L, Messing GL (1999) Effect of preparation conditions on phase formation, densification, and microstructure evolution in La-β-Al2O3/Al2O3 composites J Am Ceram Soc 82:1318–1324. CrossRefGoogle Scholar
  29. 29.
    Morales-Flórez V, Cano-Crespo R, Malmal BM, de la Rosa-Fox N, Esquivias L, Domínguez-Rodríguez A (2018) Intragranular reinforcement of alumina-based composites with carbon nanotubes via sol-gel. In: ImagineNano Int. Composites Conference Bilbao (Spain), available at Accesed 25 Jun 2018
  30. 30.
    Piñero M, Mesa-Díaz M, del M, de los Santos D, Reyes-Peces MV, Díaz-Fraile JA, de la Rosa-Fox N, Esquivias L, Morales-Florez V (2018) Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation J Sol-Gel Sci Technol 86:391–399. CrossRefGoogle Scholar
  31. 31.
    Santos PS, Santos HS, Toledo SP (2000) Standard transition aluminas Electron Microsc Stud Mater Res 3:104–114. CrossRefGoogle Scholar
  32. 32.
    Assih T, Ayral A, Abenoza M, Phalippou J (1988) Raman study of alumina gels J Mater Sci 23:3326–3331. CrossRefGoogle Scholar
  33. 33.
    Zamora-Ledezma C, Añez L, Primera J, Silva P, Etienne-Calas S, Anglaret E (2008) Photoluminescent single wall carbon nanotube-silica composite gels Carbon N Y 46:1253–1255CrossRefGoogle Scholar
  34. 34.
    Porto SPS, Krishnan RS (1967) Raman effect of corundum J Chem Phys 47:1009–1012. CrossRefGoogle Scholar
  35. 35.
    Torres-Canas F, Blanc C, Mašlík J, Tahir S, Izard N, Karasahin S, Castellani M, Dammasch M, Zamora-Ledezma C, Anglaret E (2017) Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes Mater Res Express 4:035037. CrossRefGoogle Scholar
  36. 36.
    Murphy H, Papakonstantinou P, Okpalugo TIT (2006) Raman study of multiwalled carbon nanotubes functionalized with oxygen groups J Vac Sci Technol B Microelectron Nanom Struct 24:715. CrossRefGoogle Scholar
  37. 37.
    White CM, Banks R, Hamerton I, Watts JF (2016) Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications. Prog Org Coatings 90:44–53. CrossRefGoogle Scholar
  38. 38.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes Carbon N Y 49:2581–2602. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dpto. Física de la Materia CondensadaUniversidad de SevillaSevilleSpain
  2. 2.Instituto de Ciencia de Materiales de Sevilla (CSIC/US)SevilleSpain
  3. 3.Yachay Tech University, School of Physical Sciences and NanotechnologyUrcuquíEcuador
  4. 4.Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Física, Laboratorio de Física de la Materia CondensadaApartadoVenezuela

Personalised recommendations