Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 216–224 | Cite as

Mesoporous microspheres of nickel-based layered hydroxides by aerosol-assisted self-assembly using crystalline nano-building blocks

  • Naoki Tarutani
  • Yasuaki TokudomeEmail author
  • Matías Jobbágy
  • Galo J. A. A. Soler-Illia
  • Masahide Takahashi
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Structural control in micro- and nanometer scales is necessary to design highly functional materials. Crystalline mesoporous microspheres (MMSs) are expected to improve electrochemical, catalytic, and adsorption performances. In this study, we focused on the preparation of templated MMSs of nickel-based layered hydroxides by using pre-crystallized nano-building blocks (NBBs). Layered nickel hydroxide nanoparticles were prepared through an epoxide-mediated alkalinization process and used as NBBs to construct microspheres. The spherical particles in micrometer scale were synthesized by an aerosol-assisted assembly of the NBBs dispersed in a solvent, in the presence of supramolecular templates. It was found that controlling the crystallization as well as the surface philicity permits to yield the NBBs with an adequately small size and interparticle interactions that generate self-assembled MMSs akin to those obtained in NBB-based mesoporous thin films. The preparation technique demonstrated here is highly versatile; templated MMSs with various chemical compositions of nickel-based layered double hydroxides were successfully obtained.


  • Synthesis of mesoporous microspheres composed of crystalline layered nickel hydroxide and layered double hydroxides is demonstrated.

  • Spray-drying was applied to colloidal suspensions of crystalline nano-building blocks for the synthesis.

  • Controlling the crystallization and surface philicity are important factors for the successful self-assembly.

  • The preparation technique demonstrated here is highly versatile and can be extended to various systems.


Crystalline mesoporous microspheres Nano-building blocks Layered nickel hydroxides Layered double hydroxides Epoxide-mediated alkalinization 



Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS is gratefully acknowledged. The present work was partially supported by JSPS KAKENHI, JSPS bilateral program, LNLS proposal SAXS1 18927, ANPCyT (PICT 2012-2087 and 2015-3526), UBACyT (20020130100610BA), Hitachi Metals Materials Science Foundation, The Sumitomo Foundation, and Izumi Science and Technology Foundation. We thank Mr. J. Daniels and Mr. S. M. Nikka for the helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4810_MOESM1_ESM.docx (4.6 mb)
Supplementary Information


  1. 1.
    Arcos D, López-Noriega A, Ruiz-Hernández E, Terasaki O, Vallet-Regí M (2009) Chem Mater 21:1000–1009CrossRefGoogle Scholar
  2. 2.
    Son HY, Kim KR, Lee JB, Kim THL, Jang J, Kim SJ, Yoon MS, Kim JW, Nam YS (2017) Sci Rep 7:14728CrossRefGoogle Scholar
  3. 3.
    Liu Y, Lan K, Bagabas AA, Zhang P, Gao W, Wang J, Sun Z, Fan J, Elzatahry AA, Zhao D (2016) Small 12:860–867CrossRefGoogle Scholar
  4. 4.
    Hou S, Li X, Wang H, Wang M, Zhang Y, Chi Y, Zhao Z (2017) RSC Adv 7:51993–52000CrossRefGoogle Scholar
  5. 5.
    Zhou J, Wang Y, Wang J, Qiao W, Long D, Ling L (2016) J Colloid Interface Sci 462:200–207CrossRefGoogle Scholar
  6. 6.
    Hassan MS, Lau RWM (2009) AAPS PharmSciTech 10:1252–1262.CrossRefGoogle Scholar
  7. 7.
    Liu Y, Shen D, Chen G, Elzatahry AA, Pal M, Zhu H, Wu L, Lin J, Al-Dahyan D, Li W, Zhao D (2017) Adv Mater 29:1702274CrossRefGoogle Scholar
  8. 8.
    Cirujano FG, Luz I, Soukri M, Goethem CV, Vankelecom IFJ, Lail M, Vos DED (2017) Angew Chem Int Ed 56:13302–13306CrossRefGoogle Scholar
  9. 9.
    Meng FL, Wang ZL, Zhong HX, Wang J, Yan JM, Zhang XB (2016) Adv Mater 28:7948–7955CrossRefGoogle Scholar
  10. 10.
    Tian M, Sun Y, Zhang CJ, Wang J, Qiao W, Ling L, Long D (2017) J Power Sources 364:182–190CrossRefGoogle Scholar
  11. 11.
    Shi Y, Wan Y, Zhao D (2011) Chem Soc Rev 40:3854–3878CrossRefGoogle Scholar
  12. 12.
    Gu D, Schüth F (2014) Chem Soc Rev 43:313–344CrossRefGoogle Scholar
  13. 13.
    Griin M, Lauer I, Unger KK (1997) Adv Mater 9:254–257CrossRefGoogle Scholar
  14. 14.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223–226CrossRefGoogle Scholar
  15. 15.
    Grosso D, Soler-Illia GJAA, Crepaldi EL, Charleux B, Sanchez C (2003) Adv Funct Mater 13:37–42CrossRefGoogle Scholar
  16. 16.
    Sanchez C, Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061–3082CrossRefGoogle Scholar
  17. 17.
    Fan J, Boettcher SW, Stucky GD (2006) Chem Mater 18:6391–6396CrossRefGoogle Scholar
  18. 18.
    Boettcher SW, Fan J, Tsung CK, Shi Q, Stucky GD (2007) Acc Chem Res 40:784–792CrossRefGoogle Scholar
  19. 19.
    Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2010) Adv Mater 23:599–623CrossRefGoogle Scholar
  20. 20.
    Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999–1007CrossRefGoogle Scholar
  21. 21.
    Tokudome Y, Tarutani N, Nakanishi K, Takahashi M (2013) J Mater Chem A 1:7702–7708CrossRefGoogle Scholar
  22. 22.
    Tarutani N, Tokudome Y, Jobbágy M, Viva FA, Soler-Illia GJAA, Takahashi M (2016) Chem Mater 28:5606–5610CrossRefGoogle Scholar
  23. 23.
    Wong MS, Jeng ES, Ying JY (2001) Nano Lett 1:637–642CrossRefGoogle Scholar
  24. 24.
    Rauda IE, Buonsanti R, Saldarriaga-Lopez LC, Benjauthrit K, Schelhas LT, Stefik M, Augustyn V, Ko J, Dunn B, Wiesner U, Milliron DJ, Tolbert SH (2012) ACS Nano 6:6386–6399CrossRefGoogle Scholar
  25. 25.
    Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U (2008) Science 320:1748–1752CrossRefGoogle Scholar
  26. 26.
    Soler-Illia GJAA, Scolan E, Louis A, Albouyb PA, Sanchez C (2001) New J Chem 25:156–165CrossRefGoogle Scholar
  27. 27.
    Innocenzi P, Luca Malfatti L, Piccinini M, Marcelli A (2010) J Phys Chem A 114:304–308CrossRefGoogle Scholar
  28. 28.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  29. 29.
    Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093–4138CrossRefGoogle Scholar
  30. 30.
    Pauly TR, Liu Y, Pinnavaia TJ, Billinge SJL, Rieker TP (1999) J Am Chem Soc 121:8835–8842CrossRefGoogle Scholar
  31. 31.
    Kodas TT, Hampden-Smith MJ (1999) Aerosol processing of materials. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Olhero SM, Ferreira JMF (2004) Powder Technol 139:69–75CrossRefGoogle Scholar
  33. 33.
    Mueller S, Llewellin EW, Mader HM (2011) Geophys Res Lett 38:L13316Google Scholar
  34. 34.
    Vaysse C, Guerlou-Demourgues L, Duguet E, Delmas C (2003) Inorg Chem 42:4559–4567CrossRefGoogle Scholar
  35. 35.
    Arizaga GGC, Satyanarayana KG, Wypych F (2007) Solid State Ion 178:1143–1162CrossRefGoogle Scholar
  36. 36.
    Boclair JW, Braterman PS (1999) Chem Mater 11:298–302CrossRefGoogle Scholar
  37. 37.
    Tarutani N, Tokudome Y, Fukui M, Nakanishi K, Takahashi M (2015) RSC Adv 5:57187–57192CrossRefGoogle Scholar
  38. 38.
    Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2017) Energy 126:208–216CrossRefGoogle Scholar
  39. 39.
    Song F, Hu X (2014) Nat Commun 5:4477CrossRefGoogle Scholar
  40. 40.
    Abellán G, Carrasco JA, Coronado E (2013) Inorg Chem 52:7828–7830CrossRefGoogle Scholar
  41. 41.
    Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Phys Chem Chem Phys 19:28249–28262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  2. 2.INQUIMAE-CONICET, Facultad Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto de NanosistemasUniversidad Nacional de General San Martín-CONICETSan Martín 1650, Buenos AiresArgentina
  4. 4.Department of Chemical Science and Technology, Faculty of Bioscience and Applied ChemistryHosei UniversityKoganeiJapan

Personalised recommendations