Journal of Sol-Gel Science and Technology

, Volume 88, Issue 2, pp 263–295 | Cite as

Structural characterization of bioactive glasses by solid state NMR

  • Hellmut EckertEmail author
Invited Review: Characterization methods of sol-gel and hybrid materials


Nuclear magnetic resonance (NMR) spectroscopy offers an element-selective, inherently quantitative and experimentally very flexible approach for the structural elucidation of non-crystalline materials. The present review introduces the basic concepts of this technique, highlighting the use of advanced NMR methodology for characterizing short- and intermediate range order in bioactive glass systems. The current state of the literature in this field is summarized in a comprehensive manner. NMR can give clear-cut and quantitative answers about the extent of network polymerization, the spatial distribution of the network former and network modifier species, and the structural roles of Group III elements introduced into these networks. These results facilitate our understanding of the influence of bioglass compositions upon the dissolution kinetics and bioactivities of these glasses. A particular mission of this review is to highlight the utility of non-routine, more advanced experimentation, in the hope of their increased usage and circulation in future applications.

The main six nuclear isotopes used in obtaining high-resolution magic-angle spinning NMR spectra for the structural characterization of bioactive glasses


  • This is the first comprehensive review on NMR of bioglasses.

  • The focus lies on advanced solid state NMR experimentation with the goal of establishing structure-property correlations.


Bioactive glass Nuclear magnetic resonance Structure-property correlation Advanced NMR methods 



I wish to thank the past and present members of my research group at the WWU Münster and at IFSC, University of São Paulo for their contributions to work reviewed in this article. Special thanks go to Professor Dr. Jinjun Ren (now at the Shanghai Institute of Optics and Fine Mechanics), Mr. Henrik Bradtmüller, Dr. Bianca Cerrutti, Dr. Carsten Doerenkamp, Dr. Cornelia Schröder, Dr. Tobias Uesbeck, for their experimental work being reviewed here, made during the course of PhD and postdoctoral work during the time period 2010–2016. I further wish to thank Professors Dr. Dominik Eder (formerly WWU Münster, now TU Wien) and Dr. Edgar Zanotto (Federal University of Brasil in Sao Carlos) and their coworkers for fruitful collaborations. Further support by the Brazilian funding agencies São Paulo Research Foundation FAPESP (CEPID Project 2013/07793-6, grant 2013/23490-3) and CNPq (Universal Project 477053/2012-2) is most gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The author declares that he had no conflict of interest.


  1. 1.
    Hench LL, Splinter RJ, Greenlee TK, Allen WC (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141CrossRefGoogle Scholar
  2. 2.
    Hench LL (1991) Bioceramics. From Concept to Clinic. J Am Ceram Soc 74:1487–1510CrossRefGoogle Scholar
  3. 3.
    Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:1967–1978CrossRefGoogle Scholar
  4. 4.
    Montazerian M, Zanotto ED (2017) Bioactive glass ceramics: processing, properties, and applications. RSC Smart. Materials 23:27–60Google Scholar
  5. 5.
    Jones JR, Clare AG Bio-glasses: An introduction Wiley 2012 and references thereinGoogle Scholar
  6. 6.
    Hench LL, Jones JR (2015) Bioactive glasses: Frontiers and challenges. Front Bioeng Biotechnol 3:194 PMC–4663244CrossRefGoogle Scholar
  7. 7.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256CrossRefGoogle Scholar
  8. 8.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRefGoogle Scholar
  9. 9.
    Yu H, Peng J, Xu Y, Chang J, Li H (2016) Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interf 13:703–715CrossRefGoogle Scholar
  10. 10.
    Naseri S, Lepry WC, Nazhat SN (2017) Bioglasses in wound healing. Hope Or hype? J Mater Chem B 5:6167–6174CrossRefGoogle Scholar
  11. 11.
    Siqueira RL, Peitl O, Zanotto ED (2011) Gel derived SiO2-CaO-Na2O-P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Engin C 31:983–991CrossRefGoogle Scholar
  12. 12.
    Arcos D, Vallet-Regi M (2010) Sol-gel silica based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888CrossRefGoogle Scholar
  13. 13.
    Wei GF, Yan XX, Yi J, Zhao LZ, Zhou L, Wang YH, Yu CZ (2011) Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Micro Mesopor Mater 143:157–165CrossRefGoogle Scholar
  14. 14.
    Combes C, Rey C (2010) Amorphous calcium phosphates. Syntheses, properties and their uses in biomaterials. Acta Biomater 69:3362–3378CrossRefGoogle Scholar
  15. 15.
    Assink L, Kay L (1991) Study of sol-gel chemical reaction kinetics by NMR. Ann Rev Mater Sci 1991 21:491–513CrossRefGoogle Scholar
  16. 16.
    Bonhomme C, Coelho C, Baccile N, Gervais C, Azais T, Babonneau F (2007) Advanced solid state NMR techniques for the characterization of sol-gel materials. Acc Chem Res 40:738–746CrossRefGoogle Scholar
  17. 17.
    Babonneau F, Bonhomme C (2015) Solid state NMR characterization of sol-gel materials: Recent advances, The Sol-Gel Handbook, Levy D, Zayat M, (eds). vol III. Wiley VCH, pp. 651–673Google Scholar
  18. 18.
    Smith ME, Holland D (2004) Atomic scale structure of gel materials by solid state NMR. In: Sakka S (ed) Handbook of sol-gel science and technology, vol II. Klüwer Acad Publ, pp. 35–64Google Scholar
  19. 19.
    Eckert H (1992) Structural characterization of non-crystalline solids and glasses by solid state NMR. Prog NMR Spectrosc 24:159–293CrossRefGoogle Scholar
  20. 20.
    Edén M (2012) NMR studies of oxide glasses. Ann Rep Prog Chem Sect C 108:177–231CrossRefGoogle Scholar
  21. 21.
    Charpentier T, Menziani MC, Pedone A (2013) Computational simulations of solid state NMR spectra: A new era in structure determination of oxide glasses. RSC Adv 3:10550–10578CrossRefGoogle Scholar
  22. 22.
    Charpentier T (2011) The PAW/GIPAW approach of computing NMR parameters: a new dimension added to NMR studies of solids. Solid State Nucl Magn Reson 40:1–20CrossRefGoogle Scholar
  23. 23.
    Pedone A (2017) What can we learn from molecular dynamics simulations of bioactive glasses. Adv Struct Mater 53:119–145CrossRefGoogle Scholar
  24. 24.
    Massiot D, Messinger RJ, Cadars S, Deschamps M, Montouillot V, Pellerin N, Veron E, Allix M, Florian P, Fayon F (2013) Topological, geometrical and chemical order in materials: Insights from solid state NMR. Acc Chem Res 46:1945–1984CrossRefGoogle Scholar
  25. 25.
    Eckert H, Elbers S, Epping JD, Janssen M, Kalwei M, Strojek W, Voigt U (2005) Dipolar solid state NMR approaches towards medium-range structure in glasses. Top Curr Chem 246:195–233CrossRefGoogle Scholar
  26. 26.
    Bonhomme C, Gervais C, Laurencin D (2014) Recent NMR developments applied to organic-inorganic materials. Prog Nucl Magn Reson Spectrosc 77:1–48CrossRefGoogle Scholar
  27. 27.
    Dey P, Pal SK, Sarkar R (2014) Effect of alumina addition to 45S5 glass. Transact Ind Ceram Soc 73:105–109CrossRefGoogle Scholar
  28. 28.
    Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524CrossRefGoogle Scholar
  29. 29.
    O’ Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385CrossRefGoogle Scholar
  30. 30.
    Brauer DS (2015) Bioactive glasses –structure and properties. Angew Chem 54:4160–4181CrossRefGoogle Scholar
  31. 31.
    Rivadeneira J, Gorustovich A (2016) Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 122:1424–1437CrossRefGoogle Scholar
  32. 32.
    Ylänen H (2017) Bioactive glasses: materials, properties and applications. Woodhead publishing series in biomaterialsGoogle Scholar
  33. 33.
    Boccaccini AR, Brauer DS, Hupa L (eds) (2016) Bioactive glasses: Fundamentals, technology and applications. Royal Society of ChemistryGoogle Scholar
  34. 34.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic J Biomed Mater Res 24:721–734CrossRefGoogle Scholar
  35. 35.
    Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro by SBF solution? Biomater 30:2175–2179CrossRefGoogle Scholar
  36. 36.
    Oliver WC, Pharr GM (1992) Nanoindentation in materials research: Past, present, and future. J Mater Res 7:1564CrossRefGoogle Scholar
  37. 37.
    Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851CrossRefGoogle Scholar
  38. 38.
    Edén M (2011) The split network analysis for exploring composition-structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. J Non-Cryst Solids 357:1595–1602CrossRefGoogle Scholar
  39. 39.
    Duer MJ (2004) Introduction into solid state NMR spectroscopy, Blackwell, LondonGoogle Scholar
  40. 40.
    Levitt MH (2008) Spin dynamics. Basics of nuclear magnetic resonance, J Wiley & SonsGoogle Scholar
  41. 41.
    Eckert H (2017) Medium-range order in oxide glasses. In: Dronskowski, Stein, Kikkawa (eds) Handbook of solid state chemistry and materials science. J Wiley & Sons, pp. 93–137Google Scholar
  42. 42.
    Templin M, Wiesner U, Spiess HW (1997) Multinuclear solid state NMR studies of inorganic-organic hybrid materials. Adv Mater 9:814–817CrossRefGoogle Scholar
  43. 43.
    Eckert H (2010) Short and medium range order in ion conducting glasses studied by modern solid state NMR techniques. Z Phys Chem 224:1591–1653CrossRefGoogle Scholar
  44. 44.
    Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Inst 37:93–102CrossRefGoogle Scholar
  45. 45.
    Mathew R, Stevensson B, Tilocca A, Edén M (2014) Toward a rational design of bioactive glasses with optimal structural features: Composition-structure correlations unveiled by solid-state NMR and MD simulations. J Phys Chem B 118:833–844CrossRefGoogle Scholar
  46. 46.
    Stone NJ (2016) Nuclear electric quadrupole moments. At Data Nucl Tables 111-112:1–28CrossRefGoogle Scholar
  47. 47.
    Freude D, Haase J (1993) Quadrupole effects in solid state nuclear magnetic resonance. NMR Basic Princ Progress 29:1–90CrossRefGoogle Scholar
  48. 48.
    D’Espinose de Lacaillerie JB, Fretigny C, Massiot D (2008) MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J Magn Reson 192:244–251CrossRefGoogle Scholar
  49. 49.
    Medek A, Harwood JS, Frydman L (1995) Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 117:12779–12787CrossRefGoogle Scholar
  50. 50.
    Amoureux JP, Fernandez C, Steuernagel S (1996) Z Filtering in MQMAS NMR. J Magn Reson A 123:116–118CrossRefGoogle Scholar
  51. 51.
    Schurko RW (2013) Ultra-wideline solid-state NMR spectroscopy. Acc Chem Res 46:1985–1995CrossRefGoogle Scholar
  52. 52.
    O’Dell LA (2013) The WURST kind of pulses in solid state NMR. Solid State Nucl Magn Reson 55-56:28–41CrossRefGoogle Scholar
  53. 53.
    Van Vleck JH (1948) The dipolar broadening of magnetic resonance lines in crystals. Phys Rev 74:1168–1183CrossRefGoogle Scholar
  54. 54.
    Gullion T, Schaefer J (1989) Rotational echo double resonance NMR. J Magn Reson 81:196–200Google Scholar
  55. 55.
    Grey CP, Veeman WS, Vega AJ (1993) Rotational echo 14N/13C/1H triple resonance solid state nuclear magnetic resonance: A probe of 13C-14N internuclear distances. J Chem Phys 98:7711–7724CrossRefGoogle Scholar
  56. 56.
    Gullion T, Vega A (2005) Measuring heteronuclear dipolar couplings for I = 1/2, S > 1/2 spin pairs by REDOR and REAPDOR NMR. Prog Nucl Magn Reson Spectrosc 47:123–126CrossRefGoogle Scholar
  57. 57.
    Bertmer M, Eckert H (1999) Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl Magn Reson 15:139–152CrossRefGoogle Scholar
  58. 58.
    Fayon F, Duée C, Poumeyrol T, Allix M, Massiot D (2013) Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J Phys Chem C 117:2283–2288CrossRefGoogle Scholar
  59. 59.
    Feike M, Demco DE, Graf R, Gottwald J, Hafner S, Spiess HW (1996) Broadband multiple-quantum NMR spectroscopy. J Magn Reson A 122:214–221CrossRefGoogle Scholar
  60. 60.
    Geen H, Titman JJ, Gottwald J, Spiess HW (1994) Solid state proton multiple-quantum NMR with fast magic angle spinning. Chem Phys Lett 227:79–86CrossRefGoogle Scholar
  61. 61.
    Saalwächter K, Lange F, Matyjaszewski K, Huang CF, Graf R (2011) BaBaxy16: Robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson 212:204–215CrossRefGoogle Scholar
  62. 62.
    Mathew R, Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, Garcia A, Acros D, Vallet-Regi M, Edén M (2013) Direct probing of the phosphate ion distribution in bioactive silicate glasses by solid-state NMR: Evidence for transitions between random/clustered scenarios. Chem Mater 25:1877–1885CrossRefGoogle Scholar
  63. 63.
    Wasylishen R (2012) Indirect nuclear spin-spin coupling tensors. In: Harris RK, Wasylishen RE, (eds) Encyclopedia of NMR spectroscopy, J Wiley & Sons, vol. 4. pp. 2075–2083Google Scholar
  64. 64.
    Franke D, Hudalla C, Eckert H (1992) Spectral editing in MAS NMR of aprotic solids: 31P-113Cd cross-polarization and heteronuclear double-quantum filtering studies in II-IV-V, semiconductor alloys. Solid State Nucl Magn Reson 1:297–306CrossRefGoogle Scholar
  65. 65.
    Franke D, Hudalla C, Eckert H (1992) Heteronuclear X-Y double quantum MAS NMR in crystalline inorganic solids. Solid State Nucl Magn Reson 1:33–40CrossRefGoogle Scholar
  66. 66.
    Coelho C, Babonneau F, Azais T, Bonhomme-Coury L, Maquet J, Laurent G, Bonhomme C (2006) Chemical bonding in silicophosphate gels: Contribution of dipolar and J-derived solid state NMR techniques. J Sol Gel Sci Technol 40:181–189CrossRefGoogle Scholar
  67. 67.
    Coelho C, Azais T, Bonhomme C, Bonhomme-Coury L, Boissière C, Laurent G, Massiot D (2008) Efficiency of dipolar and J-derived solid-state NMR techniques for a new pair of nuclei {31P,29Si}. Towards the characterization of Si-O-P mesoporous materials. Compt Rend Chim 11:387–397CrossRefGoogle Scholar
  68. 68.
    Lesage A, Bardet M, Emsley L (1999) Through-bond carbon−carbon connectivities in disordered solids by NMR. J Am Chem Soc 121:10987–10993CrossRefGoogle Scholar
  69. 69.
    Guerry P, Smith ME, Brown SP (2009) 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: Revealing J coupling and chemical shift two-dimensional correlations in disordered solids. J Am Chem Soc 131:11861–11874CrossRefGoogle Scholar
  70. 70.
    Stevensson B, Mathew R, Yu Y, Edén M (2015) Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite. J Magn Reson 251:52–56CrossRefGoogle Scholar
  71. 71.
    Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  72. 72.
    Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330CrossRefGoogle Scholar
  73. 73.
    Perras FA, Widdifield CM, Bryce DL (2012) QUEST—QUadrupolar exact SofTware: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. Solid State Nucl Magn Reson 45-46:36–44CrossRefGoogle Scholar
  74. 74.
    Gauss J, Stanton (2002) Electron-correlated approaches for the calculation of NMR chemical shifts, in Advances in chemical physics. Prigogine L, Rice SA (eds), John Wiley & Sons, vol. 123. pp. 355-422Google Scholar
  75. 75.
    Kaupp M, Malkin VG (2004) Calculation of NMR and EPR parameters, Wiley-VCH Weinheim, GermanyGoogle Scholar
  76. 76.
    Pedone A, Charpentier T, Malavasi G, Menziani MC (2010) New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem Mater 22:5644–5652CrossRefGoogle Scholar
  77. 77.
    Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Pedone A, Segre U (2008) Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. J Non-Cryst Solids 354:84–89CrossRefGoogle Scholar
  78. 78.
    Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351:173–183CrossRefGoogle Scholar
  79. 79.
    Mathew R, Stevensson B, Edén M (2015) Na/Ca Intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J Phys Chem B 119:5701–5715CrossRefGoogle Scholar
  80. 80.
    Grussaute H, Montagne L, Palavit G, Bernard GL (2000) Phosphate speciation in SiO2-CaO-Na2O-P2O5 and SiO2-TiO2-Na2O-P2O5 glasses. J Non-Cryst Solids 263-264:312–317CrossRefGoogle Scholar
  81. 81.
    Lockyer MWG, Holland D, Dupree R (1995) NMR investigation of the structure of some bioactive and related glasses. J Non-Cryst Solids 188:207–219CrossRefGoogle Scholar
  82. 82.
    Li A, Ren H, Cui Y, Yang C, Zhou X, Lin H, Qiu D (2017) Detailed structure of a new bioactive glass composition for the design of bone repair materials. J Non-Cryst Solids 475:10–14CrossRefGoogle Scholar
  83. 83.
    Stevensson B, Mathew R, Edén M (2014) Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J Phys Chem B 118:8863–8876CrossRefGoogle Scholar
  84. 84.
    Mercier C, Follet-Houttemane C, Pardini A, Revel B (2011) Influence of P2O5 content on the structure of SiO2-Na2O-CaO-P2O5 bioglasses by 29Si and 31P MAS-NMR. J Non-Cryst Solids 357:3901–3909CrossRefGoogle Scholar
  85. 85.
    O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties - Part I: NMR. J Non-Cryst Solids 354:3554–3560CrossRefGoogle Scholar
  86. 86.
    Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedin N, Vallet-Regí M, Edén M (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562CrossRefGoogle Scholar
  87. 87.
    Carta D, Newport RJ, Knowles JC, Smith ME, Guerry P (2011) Sol-gel produced sodium calcium phosphosilicates for bioactive applications: Synthesis and structural characterisation. Mater Chem Phys 130:690–696CrossRefGoogle Scholar
  88. 88.
    Ting HK, Page SJ, Poologasundarampillai G, Chen S, Yu B, Hanna JV, Jones JR (2017) Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses. Int J Appl Glass Sci 8:372–382CrossRefGoogle Scholar
  89. 89.
    Zhao S, Li Y, Li D (2011) Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process. J Mater Sci: Mater Med 22:201–208Google Scholar
  90. 90.
    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19:1276–1282CrossRefGoogle Scholar
  91. 91.
    Coleman NJ, Bellantone M, Nicholson JW, Mendham AP (2007) Textural and structural properties of bioactive glasses in the system CaO-SiO2 Ceramics. Silikaty 51:1–8Google Scholar
  92. 92.
    Lucas-Girot A, Mezahi FZ, Mami M, Oudadesse H, Harabi A, Le Floch M (2011) Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5: Comparison with melting method. J Non-Cryst Solids 357:3322–3327CrossRefGoogle Scholar
  93. 93.
    Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, Pullar RC (2017) A hundred times faster: Novel, rapid sol-gel synthesis of bio-glass nanopowders (Si-Na-Ca-P system, Ca:P = 1.67) without aging. Int J Appl Glass Sci 8:337–343CrossRefGoogle Scholar
  94. 94.
    Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M (2017) Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2-CaO-P2O5 systems. Ceram Int 43:12742–12754CrossRefGoogle Scholar
  95. 95.
    Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K (2016) Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int 42:14700–1470CrossRefGoogle Scholar
  96. 96.
    Matsuya S, Matsuya Y (1999) Structure of bioactive glass and its application to glass ionomer cements. Dent Mater 18:155–166CrossRefGoogle Scholar
  97. 97.
    Ren J, Doerenkamp C, Eckert H (2016) High Surface area mesoporous GaPO4-SiO2 sol-gel glasses: Structural investigation by advanced solid state NMR. J Phys Chem C 120:1758–1769CrossRefGoogle Scholar
  98. 98.
    Li Y, Placek LM, Coughlan A, Laffir FR, Pradhan D, Mellott NP, Wren AW (2015) Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO Na2O/SrO bioactive glass. J Mater Sci: Mater Med 26:85/1–12Google Scholar
  99. 99.
    Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV (2012) Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. J Mater Chem 22:7395–7402CrossRefGoogle Scholar
  100. 100.
    Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C (2004) The influence of strontium substitution in fluoroapatite glasses and glass ceramics J Non-Cryst Solids 336:223–229CrossRefGoogle Scholar
  101. 101.
    Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J Mater Chem 22:7395–7402CrossRefGoogle Scholar
  102. 102.
    Bonhomme C, Gervais C, Folliet N, Pourpoint F, Coelho Diogo C, Lao J, Jallot E, Lacroix J, Nedelec J-M, Iuga D, Hanna JV, Smith ME, Xiang Y, Du J, Laurencin D (2012) 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: Antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc 134:12611–12628CrossRefGoogle Scholar
  103. 103.
    Galliano PG, López JMP, Varetti EL, Sobrados I, Sanz J (1994) Analysis by nuclear magnetic resonance and Raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Mater Res Bull 29:1297–1306CrossRefGoogle Scholar
  104. 104.
    Souza MT, Crovace MC, Schröder C, Eckert H, Peitl O (2013) Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in bioglass-derived glasses. J Non-Cryst Solids 382:57–65CrossRefGoogle Scholar
  105. 105.
    Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524CrossRefGoogle Scholar
  106. 106.
    Aguiar H, Solla EL, Serra J, González P, León B, Malz F, Jäger C (2008) Raman and NMR study of bioactive Na2O-MgO-CaO-P2O5-SiO2 glasses. J Non-Cryst Solids 354:5004–5008CrossRefGoogle Scholar
  107. 107.
    Oliveira JM, Correia RN, Fernandes MH, Rocha J (2000) Influence of the CaO/MgO ratio on the structure of phase separated glasses: a solid state 31P and 29Si NMR study. J Non-Cryst Solids 265:221–229CrossRefGoogle Scholar
  108. 108.
    Youngman R (2018) NMR Spectroscopy in glass science: A review of the elements, Materials 11:476CrossRefGoogle Scholar
  109. 109.
    Limbach R, Karlsson S, Scannell G, Mathew R, Edén M, Wondraczek L (2017) The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties. J Non-Cryst Solids 471:6–18CrossRefGoogle Scholar
  110. 110.
    Placek LM, Keenan TJ, Li Y, Yatongchai C, Pradhan D, Boyd D, Mellott NP, Wren AW (2016) Investigating the effect of TiO2 on the structure and biocompatibility of bioactive glass. J Biomed Mater Res - Part B Appl Biomater 104:1703–1712CrossRefGoogle Scholar
  111. 111.
    Wren AW, Keenan T, Coughlan A, Lafir FR, Boyd D, Towler MR, Hall MM (2013) Characterization of Ga2O3-Na2O-CaO-ZnO-SiO2 bioglasses. J Mater Sci 2013 48:3999–4007Google Scholar
  112. 112.
    Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459CrossRefGoogle Scholar
  113. 113.
    Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Segre U (2005) Qualitative and quantitative structure-property relationships analysis of multicomponent potential bioglasses. J Phys Chem B 109:4989–4998CrossRefGoogle Scholar
  114. 114.
    Lopes JH, Magalhães A, Mazali IO, Bertran CA (2014) Effect of niobium oxide on the structure and properties of melt-derived bioactive glasses. J Am Ceram Soc 97:3843–3852CrossRefGoogle Scholar
  115. 115.
    Alhalawani AM, Towler MR (2017) novel tantalum-containing bioglass Part I. Structure and solubility. Mater Sci Engin C 72:202–210CrossRefGoogle Scholar
  116. 116.
    Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol-gel synthesis, structure, sintering and properties o bioactive and inert nano-apatite-zirconia glass-ceramics. Ceram Int 41:11024–11045CrossRefGoogle Scholar
  117. 117.
    Zhang XF, Kehoe S, Adhi SK, Ajithkumar TG, Moane S, O’Shea H, Boyd D (2011) Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: Potential components for nerve guidance conduits. Mater Sci Engin C 31:669–676CrossRefGoogle Scholar
  118. 118.
    Balasubramanian P, Buettner T, Miguez PV, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft-tissue engineering. J Eur Ceram Soc 38:855–869CrossRefGoogle Scholar
  119. 119.
    Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295CrossRefGoogle Scholar
  120. 120.
    Rico P, Rodrigo-Navarro A, Salmerón-Sánchez M (2015) Borax-loaded PLLA for promotion of myogenic differentiation. Tissue Eng A 21:2662–2672CrossRefGoogle Scholar
  121. 121.
    Sych O, Gunduz O, Pinchuk N, Stan GE, Oktar (2016) Tissue engineering scaffolds from La2O3-hydroxyapatite/boron glass composites. J Austral Ceram Soc 52:103–110Google Scholar
  122. 122.
    Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li W, Lam W, Lu WW, Wang DP, Huang WH, Lin KL, Chang J (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interf 7:1025–1031CrossRefGoogle Scholar
  123. 123.
    Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y (2011) Proliferation, differentiation and gene expression of osteoblasts in boron-containing bioglasses associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32:7068–7078CrossRefGoogle Scholar
  124. 124.
    Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295CrossRefGoogle Scholar
  125. 125.
    Yang Q, Chen S, Shi H, Xiao H, Ma Y (2015) In vitro study of improved wound-healing effect of bioactive borate-based glass nano/micro-fibers. Mater Sci Engin C 55:105–107CrossRefGoogle Scholar
  126. 126.
    Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 52:601–612CrossRefGoogle Scholar
  127. 127.
    Yu Y, Stevensson B, Edén M (2017) Medium-range structural organization of phosphorus-bearing borosilicate glasses revealed by advanced solid-state NMR experiments and MD simulations: Consequences of B/Si substitutions. J Phys Chem B 121:9737–9752CrossRefGoogle Scholar
  128. 128.
    Tsai TWT, Mou Y, Tseng YH, Zhang L, Chan JCC (2008) Solid-state NMR study of bioactive binary borosilicate glasses. J Phys Chem Solids 69:2628–2633CrossRefGoogle Scholar
  129. 129.
    Yu Y, Edén M (2016) Structure-composition relationships of bioactive borophosphosilicate glasses probed by multinuclear 11B, 29Si, and 31P solid state NMR. RSC Adv 6:101288–101303CrossRefGoogle Scholar
  130. 130.
    Eden M, Sundberg P, Stalhandske C (2011) The split network analysis for exploring composition-structure correlations in multicomponent glasses: II. Multinuclear NMR studies of alumino-borosilicates and glass wool fibers. J Non-Cryst Solids 357:1587–1594CrossRefGoogle Scholar
  131. 131.
    Edén M (2009) Homonuclear dipolar recoupling of half-integer quadrupolar nuclei. Techniques and applications. Solid State Nucl Magn Reson 36:1–10CrossRefGoogle Scholar
  132. 132.
    Sitarz M, Fojud Z, Olejniczak Z (2009) The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR. J Mol Struct 924-926:107–110CrossRefGoogle Scholar
  133. 133.
    Malavasi G, Pedone A, Menziani MC (2013) Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J Phys Chem B 117:4152–4150CrossRefGoogle Scholar
  134. 134.
    Melchers S, Uesbeck T, Winter O, Eckert H, Eder D (2016) Effect of aluminium ion incorporation on the bioactivity and structure in mesoporous bioactive glasses. Chem Mater 28:3254–3264CrossRefGoogle Scholar
  135. 135.
    Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459CrossRefGoogle Scholar
  136. 136.
    Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol-gel bioactive glasses. J Mater Chem 22:13698–13706CrossRefGoogle Scholar
  137. 137.
    Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet C, Saadi M, Hampshire S (2012) Effects of addition of nitrogen on bioglass properties and structure. J Non-Cryst Solids 358:693–701CrossRefGoogle Scholar
  138. 138.
    Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet-Houttemane C, Saadi M, Hampshire S (2013) Effects of nitrogen on properties of oxyfluoronitride bioglasses. Process Biochem 48:89–95CrossRefGoogle Scholar
  139. 139.
    Matsuya S, Stamboulis A, Hill RG, Law RV (2007) Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy. J Non-Cryst Solids 353:237–243CrossRefGoogle Scholar
  140. 140.
    Pedone A, Charpentier T, Menziani MC (2012) The structure of fluoride-containing bioactive glasses: New insights from first-principles calculations and solid state NMR spectroscopy. J Mater Chem 22:12599–12608CrossRefGoogle Scholar
  141. 141.
    Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Bioactivity of sodium free fluoride containing glasses and glass-ceramics. Mater (Basel) 7:5470–5487CrossRefGoogle Scholar
  142. 142.
    Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Novel alkali free bioactive fluorapatite glass ceramics. J Non-Cryst Solids 402:172–177CrossRefGoogle Scholar
  143. 143.
    Hill R, Calver A, Skinner S, Stamboulis A, Law RV (2006) A MAS-NMR and combined Rietveldt study of mixed calcium/strontium fluorapatite glass-ceramics. Key Engin Mater 309-311:305–308CrossRefGoogle Scholar
  144. 144.
    Brauer DS, Karpukhina N, Seah D, Law RV, Hill RG (2008) Fluoride-containing bioactive glasses. Adv Mater Res 39–40:299–304 (Glass-The Challenge for the 21st Century-9th ESG Conference with the Annual Meeting of the ICG; Trencin; Slovakia; 22–26 June 2008)CrossRefGoogle Scholar
  145. 145.
    Brauer DS, Karpukhina N, Law RV, Hill RG (2009) Structure of fluoride-containing bioactive glasses. J Mater Chem 19:5629–5636CrossRefGoogle Scholar
  146. 146.
    Hill RG, Law RV, O’Donnell MD, Hawes J, Bubb NL, Wood DJ, Miller CA, Mirsaneh M, Reaney I (2009) Characterisation of fluorine containing glasses and glass-ceramics by 19F magic angle spinning nuclear magnetic resonance spectroscopy. J Eur Ceram Soc 29:2185–2191CrossRefGoogle Scholar
  147. 147.
    Hill RG, Stamboulis A, Law RV (2006) Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy. J Dent 34:525–532CrossRefGoogle Scholar
  148. 148.
    Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282CrossRefGoogle Scholar
  149. 149.
    Chen X, Chen X, Brauer DS, Wilson RM, Law RV, Hill RG, Karpukhina N (2017) Sodium is not essential for high bioactivity of glasses. Int J Appl Glass Sci 8:428–437CrossRefGoogle Scholar
  150. 150.
    Kusumoto H, Abolghasemi S, Woodfine B, Hill RG, Law RV (2016) The effect of phosphate, fluorine, and soda content of the glass on the mechanical properties of the glass ionomer (polyalkenoate) cements. J Non-Cryst Solids 449:94–99CrossRefGoogle Scholar
  151. 151.
    Zhang L, de Araujo CC, Eckert H (2007) Structural role of fluoride in aluminophosphate sol-gel glasses: High-resolution double-resonance NMR studies. J Phys Chem B 111:10402–10412CrossRefGoogle Scholar
  152. 152.
    Chan JCC, Ohnsorge R, Meise-Gresch K, Eckert H, Höland W (2001) Apatite crystallization in an aluminosilicate glass matrix: Mechanistic studies by X-ray powder diffraction, thermal analysis and multinuclear solid state NMR spectroscopy. Chem Mater 13:4198–4206CrossRefGoogle Scholar
  153. 153.
    Eckert H (2018) Sol-gel synthesis of non-siliceous glasses and their structural characterization by solid state NMR. In: Lisa Klein (ed) Handbook of sol-gel science and technology, Springer, vol. III. pp. 1323–1373Google Scholar
  154. 154.
    Carta D, Pickup DM, Newport RJ, Knowles JC, Smith ME, Drake KO (2005) Structural studies of bioactive sol-gel phosphate based glasses. Phys Chem Glass 46:365–371Google Scholar
  155. 155.
    Carta D, Knowles JC, Smith ME, Newport RJ (2007) Synthesis and structural characterization of P2O5-CaO-Na2O sol-gel materials. J Non-Cryst Solids 353:1141–1149CrossRefGoogle Scholar
  156. 156.
    Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ (2007) A structural study of sol-gel and melt-quenched phosphate-based glasses. J Non-Cryst Solids 353:1759–1765CrossRefGoogle Scholar
  157. 157.
    Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS (2014) Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids 392-393:31–38CrossRefGoogle Scholar
  158. 158.
    Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ (2007) New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J Mater Chem 17:4777–4784CrossRefGoogle Scholar
  159. 159.
    Brauer DS, Karpukhina N, Law RV, Hill RG (2010) Effect of TiO2 addition on structure, solubility and crystallization of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356:2626–2633CrossRefGoogle Scholar
  160. 160.
    Brauer DS, Rüssel C, Kraft J (2007) Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: Experimental and modeling using artificial neural networks. J Non-Cryst Solids 353:263–270CrossRefGoogle Scholar
  161. 161.
    Foroutan F, Walters NJ, Owens GJ, Mordan NJ, Kim HW, de Leeuw NH, Knowles JC (2015) Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15). Biomed Mater 10:045025CrossRefGoogle Scholar
  162. 162.
    Foroutan F, de Leeuw NH, Martin RA, Palmer G, Owens GJ, Kim HW, Knowles JC (2014) Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)x (TiO2)(0.35−x) bioresorbable glasses (x = 0.05, 0.1, and 0.15). J Sol-Gel Sci Technol 73:434–442CrossRefGoogle Scholar
  163. 163.
    Smith JM, King SP, Barney ER, Hanna JV, Newport RJ, Pickup DM (2013) Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content. J Chem Phys 138:034501CrossRefGoogle Scholar
  164. 164.
    Pickup DM, Valappil SP, Moss RM, Twyan HL, Guerry P, Smith ME, Wilson M, Knowles JC, Newport RJ (2009) Preparation, structural characterization and antibacterial properties of Ga-doped sol-gel phosphate-based glass. J Mater Sci 44:1858–1867CrossRefGoogle Scholar
  165. 165.
    Valappil SP, Ready D, Neel EAA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5:1198–1210CrossRefGoogle Scholar
  166. 166.
    Valappil SP, Ready D, Neel EAA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741CrossRefGoogle Scholar
  167. 167.
    Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 51:4453–4461CrossRefGoogle Scholar
  168. 168.
    Shaharyar Y, Wein E, Kim JJ, Youngman RE, Muñoz F, Kim HW, Tilocca A, Goel A (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3:9360–9373CrossRefGoogle Scholar
  169. 169.
    Zhang L, Eckert H (2006) Short- and medium-range order in sodium aluminophosphate glasses: New insights from high-resolution dipolar solid state NMR spectroscopy. J Phys Chem B 110:8946–8958CrossRefGoogle Scholar
  170. 170.
    Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ (2009) Sol-gel synthesis and structural characterisation of P2O5-B2O3-Na2O glasses for biomedical applications. J Mater Chem 19:150–158CrossRefGoogle Scholar
  171. 171.
    Sharmin N, Hasan M, Rudd C, Boyd D, Werner-Zwanziger U, Ahmed I, Parsons AJ (2017) Effect of boron oxide addition on the viscosity-temperature behavior and structure of phosphate based glasses. J Biomed Mater Res B 105B:764–777CrossRefGoogle Scholar
  172. 172.
    Zielniok D, Cramer C, Eckert H (2007) Structure/property correlations in ion-conducting mixed network former glasses: Solid state NMR studies of the system Na2O-B2O3-P2O5. Chem Mater 19:3162–3170CrossRefGoogle Scholar
  173. 173.
    Yazdi AR, Towler M (2016) The effect of the addition of gallium on the structure of zinc borate glass with controlled gallium ion release. Mater Des 92:1018–1027CrossRefGoogle Scholar
  174. 174.
    Rodriguez O, Curran DJ, Papini M, Placek LM, Wren AW, Schemitsch EH, Zalzal P, Towler M (2016) Characterization of silica-based and borate based titanium containing bioactive glasses for coating metallic implants. J Non-Cryst Solids 433:95–102CrossRefGoogle Scholar
  175. 175.
    McDonald K, Hanson MA, Boyd D (2016) Modulation of strontium release from a tertiary borate glass through substitution of alkali for alkali earth oxide. J Non-Cryst Solids 443:184–191CrossRefGoogle Scholar
  176. 176.
    O’Connell K, Hanson M, O’Shea H, Boyd D (2015) Linear release of strontium ions from high borate glasses via lanthanide alkali substitutions. J Non-Cryst Solids 430:1–8CrossRefGoogle Scholar
  177. 177.
    Turcu FRV, Samoson A, Maier M, Trandafir DL, Simon S (2016) High fraction of penta-coordinated aluminum and gallium in lanthanum-aluminum-gallium borate. J Am Ceram Soc 99:2795–2800CrossRefGoogle Scholar
  178. 178.
    Mathew R, Turdean-Ionescu C, Yu Y, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2017) Proton environments in biomimetic calcium phosphates formed from mesoporous bioactive CaO-SiO2-P2O5 glasses in vitro: Insights from solid-state NMR. J Phys Chem C 121:13223–13238CrossRefGoogle Scholar
  179. 179.
    Christie JK, Cormack AN, Hanna JV, Martin RA, Newport RJ, Pickup DM, Smith ME (2016) Bioactive sol–gel glasses at the atomic scale: The complementary use of advanced probe and computer modeling methods. Int J Appl Glass Sci 7:147–153CrossRefGoogle Scholar
  180. 180.
    Dietrich E, Oudadesse H, Floch ML, Bureau B, Gloriant T (2009) In vitro chemical reactivity of doped bioactive glasses: An original approach by solid-state NMR spectroscopy. Adv Engin Mater 11:B98–B105CrossRefGoogle Scholar
  181. 181.
    Lin KSK, Tseng YH, Mou Y, Hsu, Yang YC (2005) Mechanistic study of apatite formation on bioactive glass surface using 31P solid-state NMR spectroscopy. Chem Mater 17:4493–4501CrossRefGoogle Scholar
  182. 182.
    Skipper LJ, Sowrey FE, Pickup DM, Newport RJ, Drake KO, Lin ZH, Smith ME, Saravanapavan P, Hench LL (2005) The atomic-scale interaction of bioactive glasses with simulated body fluid. Mater Sci Forum 480–481:21–26 (1st International Meeting on Applied Physics, APHYS-2003; Badajoz; Spain; 13 October 2003 through 18 October 2003)CrossRefGoogle Scholar
  183. 183.
    Jones JR, Kemp TF, Smith ME (2006) Effect of OH content on the bioactivity of sol-gel derived glass foam scaffolds. Key Engin Mater 309-311:1031–1034CrossRefGoogle Scholar
  184. 184.
    Skipper LJ, Sowrey FE, Rashid R, Newport RJ, Lin Z, Smith ME (2005) X-ray diffraction and solid state NMR studies of the growth of hydroxyapatite on bioactive calcia:silica sol-gel glasses. Phys Chem Glass 46:372–376Google Scholar
  185. 185.
    Vương BX, Hiệp ĐT (2016) In vitro studies of bioglass material by X-ray diffraction and solid-state MAS-NMR. Glass Phys Chem 42:188–193CrossRefGoogle Scholar
  186. 186.
    Gunawidjaja PN, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Stevensson B, Grins J, Vallet-Regí M, Edén M (2010) Biomimetic apatite mineralization mechanisms of mesoporous bioactive glasses as probed by multinuclear 31P, 29Si, 23Na and 13C solid-state NMR. J Phys Chem C 114:19345–19356CrossRefGoogle Scholar
  187. 187.
    Mathew R, Gunawidjaja PN, Izquierdo-Barba I, Jansson K, García A, Arcos D, Vallet-Regí M, Edén M (2011) Solid-state 31P and 1H NMR investigations of amorphous and crystalline calcium phosphates grown biomimetically from a mesoporous bioactive glass. J Phys Chem C 115:20572–20582CrossRefGoogle Scholar
  188. 188.
    Gunawidjaja PN, Izquierdo-Barba I, Mathew R, Jansson K, García A, Grins J, Arcos D, Vallet-Regí M, Edén M (2012) Quantifying apatite formation and cation leaching from mesoporous bioactive glasses in vitro: A SEM, solid-state NMR and powder XRD study. J Mater Chem 22:7214–7223CrossRefGoogle Scholar
  189. 189.
    Turdean-Ionescu C, Stevensson B, Grins J, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2015) Composition-dependent in vitro apatite formation at mesoporous bioactive glass-surfaces quantified by solid-state NMR and powder XRD. RSC Adv 5:86061–86071CrossRefGoogle Scholar
  190. 190.
    Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2016) Surface reactions of mesoporous bioactive glasses monitored by solid-state NMR: Concentration effects in simulated body fluid. J Phys Chem C 120:4961–4974CrossRefGoogle Scholar
  191. 191.
    Sriangangathan D, Chen X, Hing KA, Kanwal N, Hill RG (2017) The effect of the incorporation of fluoride into strontium-containing bioactive glasses. J Non-Cryst Solids 457:25–30CrossRefGoogle Scholar
  192. 192.
    Mosbahi S, Oudadesse H, Wers E, Trigui M, Lefeuvre B, Roiland C, Elfeki H, Elfeki A, Rebai T, Keskes H (2016) Study of bioactive glass ceramic for use as bone biomaterial in vivo: Investigation by nuclear magnetic resonance and histology. Ceram Int 42:4827–4836CrossRefGoogle Scholar
  193. 193.
    Fujiu T, Ogino M (1984) Difference of bond bonding behavior among surface active glasses and sintered apatite. J Biomed Mater Res 18:845–859CrossRefGoogle Scholar
  194. 194.
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High-frequency dynamic polarization. Acc Chem Res 46:1933–1941CrossRefGoogle Scholar
  195. 195.
    Wittmann JJ, Eckhardt M, Harneit W, Corzilius B (2017) Dynamic nuclear polarization for sensitivity enhancement in solid state NMR. Prog NMR Spectrosc 102-103:120–195CrossRefGoogle Scholar
  196. 196.
    Rossini AJ, Zagdoun A, Lelli M, Lesage A, Coperet C, Emsley L (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46:1942–1951CrossRefGoogle Scholar
  197. 197.
    Lee D, Crevant C, Bonhomme-Coury L, Babonneau F, Laurencin D, Bonhomme C, De Paëpe G (2017) Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat Commun 8:14104CrossRefGoogle Scholar
  198. 198.
    Leroy C, Aussenac F, Bonhomme-Coury L, Osaka A, Hayakaya S, Babonneau F, Coelho-Diogo C, Bonhomme C (2017) Hydroxyapatites. Key structural questions and answers from dynamic nuclear polarization. Anal, Chem 89:10201–10207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physikalische Chemie Westfälische Wilhelms Universität MünsterMünsterGermany
  2. 2.Instituto de Física, São CarlosUniversidade de São Paulo CP 369São CarlosBrazil

Personalised recommendations