Advertisement

Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 90–99 | Cite as

One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts

  • Esneyder Puello-Polo
  • Edgar Marquez
  • J. L. Brito
Review Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical, and sensor applications
  • 53 Downloads

Abstract

The effect of Nb as a support modifier on the NiMo6/Al2O3–Nb2O5(x) (x = 0, 1, 4, and 8 wt% Nb) catalysts was studied. The supports were prepared by one-pot coprecipitation from soluble precursors. The XRF analysis of the catalysts showed that the contents of Mo and Ni increased slightly with the presence of Nb. Micropore area and pore volume augmented importantly with Nb content, resulting in pore diameters between 5.3 and 9.3 nm. XPS analysis showed that the presence of Nb decreases the active metal–support interaction, improving the Mo and Ni sulfidation degree. The Raman spectra of sulfided catalysts suggested an increase in the number of layers of MoS2 in the presence of Nb. Generally, the thiophene HDS activity at normal pressure of sulfided NiMo6/Al2O3–Nb2O5(8) was greater than that of the sulfided catalysts with x = 0, 1, and 4 wt% Nb, which can be attributed to the Nb promotion that would have an effect on the type of active site (Brønsted or Lewis acidic sites), since the number of sites by CO chemisorption for sulfided NiMo6/Al2O3–Nb2O5(x) did not show correlation with the catalytic activity. The high-pressure HDS activity of dibenzothiophene was also greater in the presence of Nb, and the hydrogenation route was preferred for the Nb-promoted solid, while the unpromoted one showed a larger yield of direct desulfurization products.

Highlights

  • The niobium-containing catalyst presented the best catalytic activity.

  • Niobium promotion influenced the type of active site.

  • The presence of Nb improves the sulfidation degree of Mo and Ni.

  • Nb increases the number of Lewis acid sites related to HDS activity.

Keywords

Anderson-type heteropolyoxomolybdate Hydrodesulfurization Niobia–alumina One-pot synthesis 

Notes

Acknowledgements

The authors would like to acknowledge financial support to Universidad del Atlántico-Colombia (through Project CB21-FGI2016 “7ma Convocatoria 2016”). E.P.P. dedicates this work to Ofelia Polo (R.I.P.).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Srivastava VC (2012) RSC Adv 2:759–783CrossRefGoogle Scholar
  2. 2.
    Hayyan M, Ibrahim MH, Hayyan A, AlNashef IM, Alakrach AM, Hashim MA (2015) Ind Eng Chem Res 54:12263–12269CrossRefGoogle Scholar
  3. 3.
    Zuo D, Vrinat M, Nie H, Maugé F, Shi Y, Lacroix M, Li D (2004) Catal Today 93–95:751–760CrossRefGoogle Scholar
  4. 4.
    Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Catal Today 86:5–16CrossRefGoogle Scholar
  5. 5.
    Cabello CI, Botto IL, Thomas HJ (2000) Appl Catal A Gen 197:79–86CrossRefGoogle Scholar
  6. 6.
    Debecker PD, Stoyanova M, Rodemerck U, Gaigneaux EM (2011) J Mol Catal A Chem 340:65–76CrossRefGoogle Scholar
  7. 7.
    Ziolek M (2003) Catal Today 78:47–64CrossRefGoogle Scholar
  8. 8.
    Abdel-Rehim MA, Dos Santos ACB, Camorim VLL, Faro Jr. AC (2006) Appl Catal A Gen 305:211–218CrossRefGoogle Scholar
  9. 9.
    Faro Jr AC, Grange P, dos Santos ACB (2002) Phys Chem Chem Phys 4:3997–4002CrossRefGoogle Scholar
  10. 10.
    Sankar S, Vasudevan CNR, Rao J (1988) Phys Chem 92:1878–1882CrossRefGoogle Scholar
  11. 11.
    Gaborit V, Allali N, Geantet C, Breysse M, Vrinat M, Danot M (2000) Catal Today 57:267–273CrossRefGoogle Scholar
  12. 12.
    Altamirano E, de los Reyes JA, Murrieta F, Vrinat M (2008) Catal Today 133–135:292–298CrossRefGoogle Scholar
  13. 13.
    Polo A, Puello-Polo E, Diaz-Uribe C (2017) Prospectiva 15(1):74–82CrossRefGoogle Scholar
  14. 14.
    Palcheva R, Kaluza L, Spojakina A, Jiratova K, Tyuliev G (2012) Chin J Catal 33:952–961CrossRefGoogle Scholar
  15. 15.
    Weissman JG (1996) Catal Today 28:159–166CrossRefGoogle Scholar
  16. 16.
    Rocha AS, Faro Jr AC, Oliviero L, Van Gestel J, Maugé F (2007) J Catal 252:321–334CrossRefGoogle Scholar
  17. 17.
    Palcheva R, Kaluza L, Dimitrov L, Tyuliev G, Avdeev G, Jirátová K, Spojakina A (2016) Appl Catal A Gen 520:24–34CrossRefGoogle Scholar
  18. 18.
    Cedeño L, Hernandez D, Klimova T, Ramirez J (2003) Appl Catal A Gen 241:39–50CrossRefGoogle Scholar
  19. 19.
    Méndez FJ, Franco-López OE, Bokhimi X, Solís-Casados DA, Escobar-Alarcón L, Klimova TE (2017) Appl Catal B Env 219:479–491CrossRefGoogle Scholar
  20. 20.
    Lai W, Pang L, Zheng J, Li J, Wu Z, Yi X, Fang W, Jia L (2013) Fuel Proc Technol 110:8–16CrossRefGoogle Scholar
  21. 21.
    Ayala-G M, Puello-Polo E, Quintana P, González-García G, Diaz C (2015) RSC Adv 5:102652–102662CrossRefGoogle Scholar
  22. 22.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  23. 23.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  24. 24.
    Crépeau G, Montouillout V, Vimont A, Mariey L, Cseri T, Maugé F (2006) J Phys Chem B 110:15172–15185CrossRefGoogle Scholar
  25. 25.
    Infantes-Molina A, Romero-Pérez A, Finocchio E, Busca G, Jiménez-López A, Rodríguez-Castellón E (2013) J Catal 305:101–117CrossRefGoogle Scholar
  26. 26.
    Froment GF, Bischoff KB (1990) Chemical reactor analysis and design, 2nd ed. Wiley, New York, NY, pp 61–197Google Scholar
  27. 27.
    Juang R-S, Wu F-C, Tseng R-L (2002) Coll Surf A 201:191–199CrossRefGoogle Scholar
  28. 28.
    Sampieri A, Pronier S, Brunet S, Carrier X, Louis C, Blanchard J, Fajerwerg K, Breysse M (2010) Micro Mesop Mater 130:130–141CrossRefGoogle Scholar
  29. 29.
    Th. Weber JC, Muijsers JHMC, van Wolput CPJ, Verhagen JW (1996) Niemantsverdriet. J Phys Chem 100:14144–14150CrossRefGoogle Scholar
  30. 30.
    Aigler J, Brito JL, Leach PA, Houalla M, Proctor A, Cooper NJ, Hall WK, Hercules DM (1993) J Phys Chem 97:5699–5702CrossRefGoogle Scholar
  31. 31.
    Wang X, Ozkan US (2005) J Phys Chem B 109:1882–1890CrossRefGoogle Scholar
  32. 32.
    Shi C, Xiang K, Zhu Y, Chen X, Zhou W, Chen H (2017) Electrochim Acta 246:1088–1096CrossRefGoogle Scholar
  33. 33.
    Roukoss C, Laurenti D, Devers E, Marchand K, Massin L, Vrinat M (2009) C R Chimie 12:683–691Google Scholar
  34. 34.
    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) ACS Nano 4:2695–2700CrossRefGoogle Scholar
  35. 35.
    Kung MC, Kung HH (1985) Catal Rev Sci Eng 27:425–460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Esneyder Puello-Polo
    • 1
  • Edgar Marquez
    • 2
  • J. L. Brito
    • 3
    • 4
  1. 1.Grupo de Investigación en Oxi/Hidrotratamiento Catalítico y Nuevos MaterialesPrograma de Química-Ciencias Básicas Universidad del AtlánticoBarranquillaColombia
  2. 2.Grupo de investigación en Química y BiologíaUniversidad del NorteBarranquillaColombia
  3. 3.Laboratorio de Fisicoquímica de Superficies, Centro de QuímicaInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
  4. 4.Yachay Tech UniversityUrcuquiEcuador

Personalised recommendations