Journal of Sol-Gel Science and Technology

, Volume 88, Issue 1, pp 163–171 | Cite as

Synthesis of highly efficient Co3O4 catalysts by heat treatment ZIF-67 for CO oxidation

  • Ning Liu
  • Mengqi Tang
  • Chuwen Jing
  • Wenyuan Huang
  • Pin Tao
  • Xiaodong ZhangEmail author
  • Jianqiu Lei
  • Liang TangEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The present work reported the porous rhombic dodecahedral Co3O4 catalysts undergoing ZIF-67 calcination in air condition at different temperatures. The structural and textural properties of the obtained catalysts were fully characterized using scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption, and X-ray photoelectron spectroscopic (XPS). H2-temperature-programmed reduction (H2-TPR) was used to test their redox properties. Both surface structure and morphology of Co3O4 catalysts exhibited good correlation with their catalytic activity. The results demonstrated that the catalyst calcined at 500 °C (Co3O4-500) exhibited the best performance with respect to the complete CO conversion temperature at 115 °C. This finding was reproducible and tentatively attributed to the unique structure, higher amount of surface Co2+ and adsorbed oxygen species, and good low-temperature reduction behavior. Finally, the effect of water vapor on catalytic activity was also determined, which indicated that the addition of water vapor to the feedstock had a negative effect on CO conversion over Co3O4-500.

The porous Co3O4 catalysts was prepared through direct calcination of ZIF-67 at 500 °C.


  • Porous rhombic dodecahedral Co3O4 was successfully prepared by heat treatment ZIF-67.

  • Co3O4-500 derived from heat treatment ZIF-67 at 500 °C exhibited best activity.

  • Surface Co2+ and adsorbed oxygen species played important roles in CO oxidation.

  • Co3O4-500 catalyst possessed excellent catalytic stability for CO oxidation.


ZIF-67 Co3O4 MOFs CO oxidation 



This work was sponsored financially by the National Natural Science Foundation of China (nos. 41673093, 41473108, 41773128, 41573096, and 51508327).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4784_MOESM1_ESM.doc (20.7 mb)
Supplementary Information


  1. 1.
    Weng XL, Sun PF, Long Y, Meng QJ, Wu ZB (2017) Environ Sci Technol 51:8057–8066. CrossRefGoogle Scholar
  2. 2.
    Shen Q, Zhang LY, Sun NN, Wang H, Zhong LS, He C, Wei W, Sun YH (2017) Chem Eng J 322:46–55. CrossRefGoogle Scholar
  3. 3.
    Yu YK, Miao JF, Wang JX, He C, Chen JS (2017) Catal Sci Technol 7:1590–1601. CrossRefGoogle Scholar
  4. 4.
    Pan H, Jian YF, Yu YK, He C, Shen ZX, Liu HX (2017) Appl Surf Sci 401:120–126. CrossRefGoogle Scholar
  5. 5.
    Yang YQ, Dong H, Wang Y, Wang YX, Liu N, Wang DJ, Zhang XD (2018) Inorg Chem Commun 86:74–77. CrossRefGoogle Scholar
  6. 6.
    Yang XQ, Yu XL, Li MY, Ge MF, Zhao Y, Wang FY (2017) J Mater Chem A 5:13799–13806. CrossRefGoogle Scholar
  7. 7.
    He C, Jiang ZY, Ma M, Zhang XD, Douthwaite M, Shi JW, Hao ZP (2018) ACS Catal 8:4213–4229. CrossRefGoogle Scholar
  8. 8.
    Wang Y, Wang JY, Du BB, Wang Y, Xiong Y, Yang YQ, Zhang XD (2018) Appl Surf Sci 439:475–487. CrossRefGoogle Scholar
  9. 9.
    Huang WY, Jing CW, Zhang XD, Lei JQ, Wu MH, Tang L, Liu N (2018) Chem Eng J 349:603–612. CrossRefGoogle Scholar
  10. 10.
    Zou XJ, Dong YY, Zhang XD, Cui YB (2016) Appl Surf Sci 366:173–180. CrossRefGoogle Scholar
  11. 11.
    Chakrabarty S, Das T, Banerjee P, Thapa R, Das GP (2017) Appl Surf Sci 418:92–98. CrossRefGoogle Scholar
  12. 12.
    Zhang XD, Dong H, Wang Y, Liu N, Zuo YH, Cui LF (2016) Chem Eng J 283:1097–1107. CrossRefGoogle Scholar
  13. 13.
    Wu C, Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ (2017) J Am Chem Soc 139:8846–8854. CrossRefGoogle Scholar
  14. 14.
    Zhang XD, Yang Y, Song L, Wang YX, He C, Wang Z, Cui LF (2018) Mol Catal 447:80–89. CrossRefGoogle Scholar
  15. 15.
    Zhang XD, Dong H, Gu ZJ, Wang G, Zuo YH, Wang YG, Cui LF (2015) Chem Eng J 269:94–104. CrossRefGoogle Scholar
  16. 16.
    Zhang XD, Yang Y, Hou FL, Lv XT, Wang YX, Cui LF (2017) Catalysts 7(382):1–13. CrossRefGoogle Scholar
  17. 17.
    Yang YQ, Hou FL, Li HX, Liu N, Wang Y, Zhang XD (2017) J Porous Mat 24:1661–1665. CrossRefGoogle Scholar
  18. 18.
    Zhang XD, Li HX, Hou FL, Yang Y, Dong H, Liu N, Wang YX, Cui LF (2017) Appl Surf Sci 411:27–33. CrossRefGoogle Scholar
  19. 19.
    Zhang XD, Li HX, Yang Y, Zhang TT, Wen X, Liu N, Wang DJ (2017) J Environ Chem Eng 5:5179–5186. CrossRefGoogle Scholar
  20. 20.
    Cui LF, Zhao D, Yang Y, Wang YX, Zhang XD (2017) J Solid State Chem 247:168–172. CrossRefGoogle Scholar
  21. 21.
    Zhan WC, Yang SZ, Zhang PF, Guo YL, Lu GZ, Chisholm MF, Dai S (2017) Chem Mater 29:7323–7329. CrossRefGoogle Scholar
  22. 22.
    Zhang XD, Li HX, Lv XT, Xu JC, Wang YX, He C, Liu N, Yang YQ, Wang Y (2018) Chem Eur J 24:8822–8832. CrossRefGoogle Scholar
  23. 23.
    Zhang XD, Hou FL, Li HX, Yang Y, Wang YX, Liu N, Yang YQ (2018) Micro Meso Mater 259:211–219. CrossRefGoogle Scholar
  24. 24.
    Yang YQ, Dong H, Wang Y, He C, Wang YX, Zhang XD (2018) J Solid State Chem 258:582–587. CrossRefGoogle Scholar
  25. 25.
    Yu FL, Qu ZP, Zhang XD, Fu Q, Wang Y (2013) J Energy Chem 22:845–852. CrossRefGoogle Scholar
  26. 26.
    Liu N, Huang WY, Zhang XD, Tang L, Wang L, Wang YX, Wu MH (2018) Appl Catal B 221:119–128. CrossRefGoogle Scholar
  27. 27.
    Huang WY, Liu N, Zhang XD, Wu MH, Tang L (2017) Appl Surf Sci 425:107–116. CrossRefGoogle Scholar
  28. 28.
    Zhang XD, Yang Y, Huang WY, Yang YQ, Wang YX, He C, Liu N, Wu MH, Tang L (2018) Mater Res Bull 99:349–358. CrossRefGoogle Scholar
  29. 29.
    Qin J, Wang S, Wang X (2017) Appl Catal B 209:476–482. CrossRefGoogle Scholar
  30. 30.
    Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186–10191. CrossRefGoogle Scholar
  31. 31.
    Wu CS, Xiong ZH, L C, Zhang JM (2015) RSC Adv 5:82127–82137. CrossRefGoogle Scholar
  32. 32.
    Wang N, Du C, Long R, Xiong Y (2017) Nano Res 10(9):3228–3237. CrossRefGoogle Scholar
  33. 33.
    Krokidas P, Castier M, Moncho S, Sredojevic DN, Brothers EN, Kwon HT, Jeong HK, Lee JS, Economou IG (2016) J Phys Chem C 120(15):8116–8124. CrossRefGoogle Scholar
  34. 34.
    Lin KY, Lee WD (2016) Chem Eng J 284:1017–1027. CrossRefGoogle Scholar
  35. 35.
    Zheng F, He M, Yang Y, Chen Q (2015) Nanoscale 7(8):3410–3417. CrossRefGoogle Scholar
  36. 36.
    Wang F, Zhang L, Xu L, Deng Z, Shi W (2017) Fuel 203:419–429. CrossRefGoogle Scholar
  37. 37.
    Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y (2015) J Mol Catal A Chem 398:79–85. CrossRefGoogle Scholar
  38. 38.
    Liotta LF, Wu H, Pantaleo G, Venezia AM (2013) Catal Sci Technol 3:3085–3102. CrossRefGoogle Scholar
  39. 39.
    Tang CW, Yu WY, Lin CJ, Wang CB, Chien SH (2007) Catal Lett 116(3–4):161–166. CrossRefGoogle Scholar
  40. 40.
    Baidya T, Murayama T, Bera P, Safonova OV, Steiger P, Katiyar NK, Biswas K, Haruta M (2017) J Phys Chem C 121(28):15256–15265. CrossRefGoogle Scholar
  41. 41.
    Tripathy SK, Christy M, Park N-H, Suh E-K, Anand S, Yu Y-T (2008) Mater Lett 62(6–7):1006–1009. CrossRefGoogle Scholar
  42. 42.
    Cai T, Huang H, Deng W, Dai Q, Liu W, Wang X (2015) Appl Catal B 166–167:393–405. CrossRefGoogle Scholar
  43. 43.
    Li J, Lu G, Wu G, Mao D, Guo Y, Wanga Y, Yun G (2014) Catal Sci Technol 4:1268–1275. CrossRefGoogle Scholar
  44. 44.
    Lin MY, Yu XL, Yang XQ, Li KZ, Ge MF, Li JH (2017) Catal Sci Technol 7:1573–1580. CrossRefGoogle Scholar
  45. 45.
    Pan H, Jian YF, Chen CW, He C, Hao ZP, Liu HX, Shen ZX (2017) Catal Sci Technol 51:6288–6297. CrossRefGoogle Scholar
  46. 46.
    Meng DM, Xu Q, Jiao YL, Guo Y, Guo YL, Wang L, Lu GZ, Zhan WC (2018) Appl Catal B 221:652–663. CrossRefGoogle Scholar
  47. 47.
    Sun PF, Wang WL, Da XX, Weng XL, Wu ZB (2016) Appl Catal B 198:389–397. CrossRefGoogle Scholar
  48. 48.
    Am HuZ, Qiu S, You Y, Guo Y, Guo YL, Wang L, Zhan WC, Lu GZ (2018) Appl Catal B 225:110–120. CrossRefGoogle Scholar
  49. 49.
    Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S (2017) Angew Chem Int Ed Engl 56:4494–4498. CrossRefGoogle Scholar
  50. 50.
    Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ (2016) J Am Chem Soc 138:16130–16139. CrossRefGoogle Scholar
  51. 51.
    Zhang XD, Hou FL, Yang Y, Wang YX, Liu N, Chen DY, Yang Q (2017) Appl Surf Sci 423:771–779. CrossRefGoogle Scholar
  52. 52.
    Zheng F, Yin Z, Xu S, Zhang Y (2016) Mater Lett 182:214–217. CrossRefGoogle Scholar
  53. 53.
    Zhang C, Zhang L, Xu GC, Ma X, Li YH, Zhang CY, Jia DZ (2017) New J Chem 41:1631–1636. CrossRefGoogle Scholar
  54. 54.
    Yan N, Chen Q, Wang F, Wang Y, Zhong H, Hua L (2012) Mater Chem A 1(3):637–643. CrossRefGoogle Scholar
  55. 55.
    Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M (2009) J Catal 267:121–128. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  3. 3.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations