Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 148–155 | Cite as

Diving into the chiral pool: enantiopure microporous polysilsesquioxane spheres from both enantiomers with an oxazolidinone motif

  • Malina Bilo
  • Michael Sartor
  • Hiba Nasser
  • Young Joo Lee
  • Felix J. Brieler
  • Michael FröbaEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


Organosilica hybrid materials from bridged silsesquioxanes combine attractive properties of a silica backbone with flexible organic compounds. This class of materials is of interest for different applications. Enantiopure chiral polysilsesquioxanes play a role in fields like the enantioselective catalysis or chromatography. Different applications have been used for their synthesis already. Here, l-valine, representative of the chiral pool, and the respective enantiomer d-valine were used to design two enantiomers of oxazolidinone derivates in a multistep synthesis path. The oxazolidinones were bis-silylated in a double Heck cross-coupling. Formation of micropores was realized by self-assembly of the precursors under suitable conditions, leading to polysilsesquioxanes with high surface areas as could be investigated by argon physisorption. The materials were profoundly characterized using solid-state NMR. The retention of the stereogenic information could be proven by circular dichroism measurements of the precursors as well as the respective hybrid materials. Furthermore, the materials were obtained in spherical morphology.


  • Nanoporous enantiopure chiral polysilsesquioxanes synthesized from enantiomeric bis-silylated organosilica precursors.

  • These precursors were synthesized from natural products from the chiral pool—an enantiomeric pair of amino acids. With this approach we got to synthesize both precursor enantiomers purely—a rarely gained aim as in most approaches one enantiomer is inaccessible.

  • The respective hybrid materials were received exclusively from each of the very precursors without co-condensation with other silica sources, which enables maximal density of the chiral information and benefits the formation of micropores under suitable conditions without templating.

  • This is accompanied by high apparent surface areas and therewith good accessibility of the functional sides and offers great potential for the utilization of the material in the before named applications.


Chiral organosilica Polysilsesquioxanes Microporous Spherical morphology 



We thank Renate Walter for SEM images and Theresa Nuguid for support with the CD measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We assure that this manuscript complies to the Ethical Rules applicable for this journal.


  1. 1.
    Seth S, Matzger AJ (2017) Cryst Growth Des 17:4043–4048CrossRefGoogle Scholar
  2. 2.
    Cao X, Tan C, Sindoro M, Zhang H (2017) Chem Soc Rev 46:2660–2677CrossRefGoogle Scholar
  3. 3.
    Huang N, Wang P, Jiang D (2016) Nat Rev Mater 1:16068CrossRefGoogle Scholar
  4. 4.
    Chujo Y, Tanaka K (2015) Bull Chem Soc Jpn 88:633–643CrossRefGoogle Scholar
  5. 5.
    Gon M, Tanaka K, Chujo Y (2017) Bull Chem Soc Jpn 90:463–474CrossRefGoogle Scholar
  6. 6.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  7. 7.
    Croissant JG, Cattoën X, Durand JO, Wong Chi Man M, Khashab NM (2016) Nanoscale 8:19945–19972CrossRefGoogle Scholar
  8. 8.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem 118:3290–3328CrossRefGoogle Scholar
  9. 9.
    Shea KJ, Loy DA (2001) Chem Mater 13:3306–3319CrossRefGoogle Scholar
  10. 10.
    Hu LC, Shea KJ (2011) Chem Soc Rev 40:688–695CrossRefGoogle Scholar
  11. 11.
    Hoffmann F, Fröba M (2011) Chem Soc Rev 40:608–620CrossRefGoogle Scholar
  12. 12.
    Van Der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salgueroc FJ (2013) Chem Soc Rev 42:3913–3955CrossRefGoogle Scholar
  13. 13.
    Grösch L, Lee YJ, Hoffmann F, Fröba M (2015) Chem Eur J 21:331–346CrossRefGoogle Scholar
  14. 14.
    Fatieiev Y, Croissant JG, Alsaiari S, Moosa BA, Anjum DH, Khashab NM (2015) ACS Appl Mater Interfaces 7:24993–24997CrossRefGoogle Scholar
  15. 15.
    Croissant JG, Fatieiev Y, Omar H, Anjum DH, Gurinov A, Lu J, Tamanoi F, Zink JI, Khashab NM (2016) Chem Eur J 22:9607–9615CrossRefGoogle Scholar
  16. 16.
    Park SS, Santha Moorthy M, Ha CS (2014) NPG Asia Mater 6:1–21Google Scholar
  17. 17.
    Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Green Chem 18:881–922CrossRefGoogle Scholar
  18. 18.
    Rebbin V, Schmidt R, Fröba M (2006) Angew Chem Int Ed 45:5210–5214CrossRefGoogle Scholar
  19. 19.
    Martens S, Ortmann R, Brieler FJ, Pasel C, Lee YJ, Bathen D, Fröba M (2014) Z Anorg Allg Chem 640:632–640CrossRefGoogle Scholar
  20. 20.
    Nguyen LA, He H, Pham-Huy C (2006) Int J Biomed Sci 2:85–100Google Scholar
  21. 21.
    Àlvaro M, Benitez M, Das D, Ferrer B, García H (2004) Chem Mater 16:2222–2228CrossRefGoogle Scholar
  22. 22.
    Hérault D, Cerveau G, Corriu RJP, Mehdi A (2011) Dalton Trans 40:446–451CrossRefGoogle Scholar
  23. 23.
    Wu X, You L, Di B, Hao W, Su M, Gu Y, Shen L (2013) J Chromatogr A 1299:78–84CrossRefGoogle Scholar
  24. 24.
    Zhu G, Jiang D, Yang Q, Yang J, Li C (2007) J Chromatogr A 1149:219–227CrossRefGoogle Scholar
  25. 25.
    Zhu G, Zhong H, Yang Q, Li C (2008) Microporous Mesoporous Mater 116:36–43CrossRefGoogle Scholar
  26. 26.
    MacQuarrie S, Thompson MP, Blanc A, Mosey NJ, Lemieux RP, Crudden CM (2008) J Am Chem Soc 130:14099–14101CrossRefGoogle Scholar
  27. 27.
    Wu X, Blackburn T, Webb JD, Garcia-Bennett AE, Crudden CM (2011) Angew Chem Int Ed 50:8095–8099CrossRefGoogle Scholar
  28. 28.
    Seki T, McEleney K, Crudden CM (2012) Chem Commun 48:6369–6371CrossRefGoogle Scholar
  29. 29.
    MacLean MWA, Wood TK, Wu G, Lemieux RP, Crudden CM (2014) Chem Mater 26:5852–5859CrossRefGoogle Scholar
  30. 30.
    Monge-Marcet A, Pleixats R, Cottoën X, Man MWC, Alonso DA, Nájera C (2011) New J Chem 35:2766–2772CrossRefGoogle Scholar
  31. 31.
    Brethon A, Hessemann P, Réjauld L, Moreau JJE, Wong Chi Man M (2001) J Organomet Chem 627:239–248CrossRefGoogle Scholar
  32. 32.
    Ide A, Voss R, Scholz G, Ozin GA, Antonietti M, Thomas A (2007) Chem Mater 19:2649–2657CrossRefGoogle Scholar
  33. 33.
    Kuschel A, Polarz S (2006) Adv Mater 18:1206–1209CrossRefGoogle Scholar
  34. 34.
    Inagaki S, Guan S, Yang Q, Kapoor MP, Shimada T (2008) ChemComm 202–204Google Scholar
  35. 35.
    Morell J, Chatterjee S, Klar PJ, Mauder D, Shenderovich I, Hoffmann F, Fröba M (2008) Chem Eur J 14:5935–5940CrossRefGoogle Scholar
  36. 36.
    Zhuang TY, Shi JY, Ma BC, Wang W (2010) J Mater Chem 20:6026–6029CrossRefGoogle Scholar
  37. 37.
    Reid LM, Crudden CM (2016) Chem Mater 28:7605–7612CrossRefGoogle Scholar
  38. 38.
    Kuschel A, Polarz S (2008) Angew Chem Int Ed 47:9513–9517CrossRefGoogle Scholar
  39. 39.
    Beretta M, Morell J, Sozzani P, Fröba M (2010) Chem Commun 46:2495–2497CrossRefGoogle Scholar
  40. 40.
    Huybrechts W, Lauwaert J, De Vylder A, Mertens M, Mali G, Thybaut JW, Van Der Voort P, Cool P (2017) Microporous Mesoporous Mater 251:1–8CrossRefGoogle Scholar
  41. 41.
    Cohen O, Abu-Reziq R, Gelman D (2017) Tetrahedron Assymetry 27:1675–1685CrossRefGoogle Scholar
  42. 42.
    Gedrich K, Heitbaum M, Notzon A, Senkovska I, Fröhlich R, Getzschmann J, Mueller U, Glorius F, Kaskel S (2011) Chem Eur J 17:2099–2106CrossRefGoogle Scholar
  43. 43.
    Sartor M, Stein T, Hoffmann F, Fröba M (2016) Chem Mater 2:519–528CrossRefGoogle Scholar
  44. 44.
    Evans DA (1982) Aldrichimica Acta 15:23–27Google Scholar
  45. 45.
    Pedersen DS, Rosenbohm C (2001) Synthesis 16:2431–2434Google Scholar
  46. 46.
    Hoffmann F, Güngerich M, Klar PJ, Fröba M (2007) J Phys Chem C 111:5648–5660CrossRefGoogle Scholar
  47. 47.
    Cornelius M, Hoffmann F, Ufer B, Behrens P, Fröba M (2008) J Mater Chem 18:2587–2592CrossRefGoogle Scholar
  48. 48.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  49. 49.
    Shea KJ, Loy DA, Webster O (1992) J Am Chem Soc 114:6700–6709Google Scholar
  50. 50.
    Boury B, Corriu RJP, Le Strat V (1999) Chem Mater 11:2796–2803CrossRefGoogle Scholar
  51. 51.
    Chemtob A, Ni L, Croutxé-Barghorn C, Boury B (2014) Chem Eur J 20:1790–1806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6HamburgGermany

Personalised recommendations