Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 148–155 | Cite as

Diving into the chiral pool: enantiopure microporous polysilsesquioxane spheres from both enantiomers with an oxazolidinone motif

  • Malina Bilo
  • Michael Sartor
  • Hiba Nasser
  • Young Joo Lee
  • Felix J. Brieler
  • Michael FröbaEmail author
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • 92 Downloads

Abstract

Organosilica hybrid materials from bridged silsesquioxanes combine attractive properties of a silica backbone with flexible organic compounds. This class of materials is of interest for different applications. Enantiopure chiral polysilsesquioxanes play a role in fields like the enantioselective catalysis or chromatography. Different applications have been used for their synthesis already. Here, l-valine, representative of the chiral pool, and the respective enantiomer d-valine were used to design two enantiomers of oxazolidinone derivates in a multistep synthesis path. The oxazolidinones were bis-silylated in a double Heck cross-coupling. Formation of micropores was realized by self-assembly of the precursors under suitable conditions, leading to polysilsesquioxanes with high surface areas as could be investigated by argon physisorption. The materials were profoundly characterized using solid-state NMR. The retention of the stereogenic information could be proven by circular dichroism measurements of the precursors as well as the respective hybrid materials. Furthermore, the materials were obtained in spherical morphology.

Highlights

  • Nanoporous enantiopure chiral polysilsesquioxanes synthesized from enantiomeric bis-silylated organosilica precursors.

  • These precursors were synthesized from natural products from the chiral pool—an enantiomeric pair of amino acids. With this approach we got to synthesize both precursor enantiomers purely—a rarely gained aim as in most approaches one enantiomer is inaccessible.

  • The respective hybrid materials were received exclusively from each of the very precursors without co-condensation with other silica sources, which enables maximal density of the chiral information and benefits the formation of micropores under suitable conditions without templating.

  • This is accompanied by high apparent surface areas and therewith good accessibility of the functional sides and offers great potential for the utilization of the material in the before named applications.

Keywords

Chiral organosilica Polysilsesquioxanes Microporous Spherical morphology 

Notes

Acknowledgements

We thank Renate Walter for SEM images and Theresa Nuguid for support with the CD measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We assure that this manuscript complies to the Ethical Rules applicable for this journal.

References

  1. 1.
    Seth S, Matzger AJ (2017) Cryst Growth Des 17:4043–4048Google Scholar
  2. 2.
    Cao X, Tan C, Sindoro M, Zhang H (2017) Chem Soc Rev 46:2660–2677Google Scholar
  3. 3.
    Huang N, Wang P, Jiang D (2016) Nat Rev Mater 1:16068Google Scholar
  4. 4.
    Chujo Y, Tanaka K (2015) Bull Chem Soc Jpn 88:633–643Google Scholar
  5. 5.
    Gon M, Tanaka K, Chujo Y (2017) Bull Chem Soc Jpn 90:463–474Google Scholar
  6. 6.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251Google Scholar
  7. 7.
    Croissant JG, Cattoën X, Durand JO, Wong Chi Man M, Khashab NM (2016) Nanoscale 8:19945–19972Google Scholar
  8. 8.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem 118:3290–3328Google Scholar
  9. 9.
    Shea KJ, Loy DA (2001) Chem Mater 13:3306–3319Google Scholar
  10. 10.
    Hu LC, Shea KJ (2011) Chem Soc Rev 40:688–695Google Scholar
  11. 11.
    Hoffmann F, Fröba M (2011) Chem Soc Rev 40:608–620Google Scholar
  12. 12.
    Van Der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salgueroc FJ (2013) Chem Soc Rev 42:3913–3955Google Scholar
  13. 13.
    Grösch L, Lee YJ, Hoffmann F, Fröba M (2015) Chem Eur J 21:331–346Google Scholar
  14. 14.
    Fatieiev Y, Croissant JG, Alsaiari S, Moosa BA, Anjum DH, Khashab NM (2015) ACS Appl Mater Interfaces 7:24993–24997Google Scholar
  15. 15.
    Croissant JG, Fatieiev Y, Omar H, Anjum DH, Gurinov A, Lu J, Tamanoi F, Zink JI, Khashab NM (2016) Chem Eur J 22:9607–9615Google Scholar
  16. 16.
    Park SS, Santha Moorthy M, Ha CS (2014) NPG Asia Mater 6:1–21Google Scholar
  17. 17.
    Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Green Chem 18:881–922Google Scholar
  18. 18.
    Rebbin V, Schmidt R, Fröba M (2006) Angew Chem Int Ed 45:5210–5214Google Scholar
  19. 19.
    Martens S, Ortmann R, Brieler FJ, Pasel C, Lee YJ, Bathen D, Fröba M (2014) Z Anorg Allg Chem 640:632–640Google Scholar
  20. 20.
    Nguyen LA, He H, Pham-Huy C (2006) Int J Biomed Sci 2:85–100Google Scholar
  21. 21.
    Àlvaro M, Benitez M, Das D, Ferrer B, García H (2004) Chem Mater 16:2222–2228Google Scholar
  22. 22.
    Hérault D, Cerveau G, Corriu RJP, Mehdi A (2011) Dalton Trans 40:446–451Google Scholar
  23. 23.
    Wu X, You L, Di B, Hao W, Su M, Gu Y, Shen L (2013) J Chromatogr A 1299:78–84Google Scholar
  24. 24.
    Zhu G, Jiang D, Yang Q, Yang J, Li C (2007) J Chromatogr A 1149:219–227Google Scholar
  25. 25.
    Zhu G, Zhong H, Yang Q, Li C (2008) Microporous Mesoporous Mater 116:36–43Google Scholar
  26. 26.
    MacQuarrie S, Thompson MP, Blanc A, Mosey NJ, Lemieux RP, Crudden CM (2008) J Am Chem Soc 130:14099–14101Google Scholar
  27. 27.
    Wu X, Blackburn T, Webb JD, Garcia-Bennett AE, Crudden CM (2011) Angew Chem Int Ed 50:8095–8099Google Scholar
  28. 28.
    Seki T, McEleney K, Crudden CM (2012) Chem Commun 48:6369–6371Google Scholar
  29. 29.
    MacLean MWA, Wood TK, Wu G, Lemieux RP, Crudden CM (2014) Chem Mater 26:5852–5859Google Scholar
  30. 30.
    Monge-Marcet A, Pleixats R, Cottoën X, Man MWC, Alonso DA, Nájera C (2011) New J Chem 35:2766–2772Google Scholar
  31. 31.
    Brethon A, Hessemann P, Réjauld L, Moreau JJE, Wong Chi Man M (2001) J Organomet Chem 627:239–248Google Scholar
  32. 32.
    Ide A, Voss R, Scholz G, Ozin GA, Antonietti M, Thomas A (2007) Chem Mater 19:2649–2657Google Scholar
  33. 33.
    Kuschel A, Polarz S (2006) Adv Mater 18:1206–1209Google Scholar
  34. 34.
    Inagaki S, Guan S, Yang Q, Kapoor MP, Shimada T (2008) ChemComm 202–204Google Scholar
  35. 35.
    Morell J, Chatterjee S, Klar PJ, Mauder D, Shenderovich I, Hoffmann F, Fröba M (2008) Chem Eur J 14:5935–5940Google Scholar
  36. 36.
    Zhuang TY, Shi JY, Ma BC, Wang W (2010) J Mater Chem 20:6026–6029Google Scholar
  37. 37.
    Reid LM, Crudden CM (2016) Chem Mater 28:7605–7612Google Scholar
  38. 38.
    Kuschel A, Polarz S (2008) Angew Chem Int Ed 47:9513–9517Google Scholar
  39. 39.
    Beretta M, Morell J, Sozzani P, Fröba M (2010) Chem Commun 46:2495–2497Google Scholar
  40. 40.
    Huybrechts W, Lauwaert J, De Vylder A, Mertens M, Mali G, Thybaut JW, Van Der Voort P, Cool P (2017) Microporous Mesoporous Mater 251:1–8Google Scholar
  41. 41.
    Cohen O, Abu-Reziq R, Gelman D (2017) Tetrahedron Assymetry 27:1675–1685Google Scholar
  42. 42.
    Gedrich K, Heitbaum M, Notzon A, Senkovska I, Fröhlich R, Getzschmann J, Mueller U, Glorius F, Kaskel S (2011) Chem Eur J 17:2099–2106Google Scholar
  43. 43.
    Sartor M, Stein T, Hoffmann F, Fröba M (2016) Chem Mater 2:519–528Google Scholar
  44. 44.
    Evans DA (1982) Aldrichimica Acta 15:23–27Google Scholar
  45. 45.
    Pedersen DS, Rosenbohm C (2001) Synthesis 16:2431–2434Google Scholar
  46. 46.
    Hoffmann F, Güngerich M, Klar PJ, Fröba M (2007) J Phys Chem C 111:5648–5660Google Scholar
  47. 47.
    Cornelius M, Hoffmann F, Ufer B, Behrens P, Fröba M (2008) J Mater Chem 18:2587–2592Google Scholar
  48. 48.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069Google Scholar
  49. 49.
    Shea KJ, Loy DA, Webster O (1992) J Am Chem Soc 114:6700–6709Google Scholar
  50. 50.
    Boury B, Corriu RJP, Le Strat V (1999) Chem Mater 11:2796–2803Google Scholar
  51. 51.
    Chemtob A, Ni L, Croutxé-Barghorn C, Boury B (2014) Chem Eur J 20:1790–1806Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6HamburgGermany

Personalised recommendations