Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 78–90 | Cite as

Engineering of large-pore lipid-coated mesoporous silica nanoparticles for dual cargo delivery to cancer cells

  • Achraf Noureddine
  • Elizabeth A. Hjelvik
  • Jonas G. Croissant
  • Paul N. Durfee
  • Jacob O. Agola
  • C. Jeffrey BrinkerEmail author
Brief Communication: Sol-gel, hybrids and solution chemistries


Lipid-coated mesoporous silica nanoparticles (LC-MSNs) have recently emerged as a next-generation cargo delivery nanosystem combining the unique attributes of both the organic and inorganic components. The high surface area biodegradable inorganic mesoporous silica core can accommodate multiple classes of bio-relevant cargos in large amounts, while the supported lipid bilayer coating retains the cargo and increases the stability of the nanocarrier in bio-relevant media which should promote greater bio-accumulation of LC-MSNs in cancer sites. In this contribution, we report on the optimization of various sol–gel synthesis (pH, stirring speed) and post-synthesis (hydrothermal treatment) procedures to enlarge the MSN pore size and tune the surface chemistry so as to enable loading and delivery of large biomolecules. The proof of concept of the dual cargo-loaded nanocarrier has been demonstrated in immortalized cervical cancer HeLa cells using MSNs of various fine-tuned pore sizes.


  • Lipid-coated mesoporous silica nanoparticles were prepared for dual cargo delivery to cancer cells.

  • The pore and particle sizes, surface areas, and condensation degrees were tuned by sol–gel processes.

  • Sol–gel (pH, stirring speed) and post-synthesis (hydrothermal treatment) parameters were optimized.


Mesoporous silica nanoparticles Large pore Sol–gel Supported lipid bilayer Drug delivery Biomedical 



This work was supported by the Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program and the Lymphoma and Leukemia Society (LLS) (A.N., E.A.H., J.G.C., P.N.D., J.O.A. and C.J.B.). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater 7:1700831Google Scholar
  2. 2.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  3. 3.
    Jiang X, Bao L, Cheng Y-S, Dunphy DR, Li X, Brinker CJ (2012) Aerosol-assisted synthesis of monodisperse single-crystalline α-cristobalite nanospheres. Chem Commun 48:1293–1295Google Scholar
  4. 4.
    Jiang X, Jiang Y-B, Brinker CJ (2011) Hydrothermal synthesis of monodisperse single-crystalline alpha-quartz nanospheres. Chem Commun 47:7524–7526Google Scholar
  5. 5.
    Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389:364–368Google Scholar
  6. 6.
    Durfee PN, Lin YS, Dunphy DR, Muñiz AJ, Butler KS, Humphrey KR, Lokke AJ, Agola JO, Chou SS, Chen IM, Wharton W, Townson JL, Willman CL, Brinker CJ (2016) Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 10:8325–8345Google Scholar
  7. 7.
    Shenoi-Perdoor S, Noureddine A, Dubois F, Wong Chi Man M, Cattoën X (2016) Click functionalization of sol–gel materials. Handbook of sol-gel science and technology. Springer, Cham, pp 1–40Google Scholar
  8. 8.
    Noureddine A, Lichon L, Maynadier M, Garcia M, Gary-Bobo M, Zink JI, Cattoen X, Wong Chi Man M (2015) Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers. Nanoscale 7:11444–11452Google Scholar
  9. 9.
    Townson JL, Lin YS, Agola JO, Carnes EC, Leong HS, Lewis JD, Haynes CL, Brinker CJ (2013) Re-examining the size/charge paradigm: differing in vivo characteristics of size and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 135:16030Google Scholar
  10. 10.
    Lammers T, Kiessling F, Ashford M, Hennink W, Crommelin D, Storm G (2016) Cancer nanomedicine: is targeting our target? Nat Rev Mater 1:16069Google Scholar
  11. 11.
    Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29:1604634Google Scholar
  12. 12.
    Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong K-T (2016) The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 319:86–109Google Scholar
  13. 13.
    Butler KS, Durfee PN, Theron C, Ashley CE, Carnes EC, Brinker CJ (2016) Protocells: modular mesoporous silica nanoparticle‐supported lipid bilayers for drug delivery. Small 12:2173–2185Google Scholar
  14. 14.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226Google Scholar
  15. 15.
    Croissant JG, Qi C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M, Durand J-O (2016) Multifunctional gold-mesoporous silica nanocomposites for enhanced two-photon imaging and therapy of cancer cells. Front Mol Biosci 3:1Google Scholar
  16. 16.
    Wang F, Chen X, Zhao Z, Tang S, Huang X, Lin C, Cai C, Zheng N (2011) Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. J Mater Chem 21:11244–11252Google Scholar
  17. 17.
    Fatieiev Y, Croissant J, Alamoudi K, Khashab N (2017) Cellular internalization and biocompatibility of periodic mesoporous organosilica nanoparticles with tunable morphologies: from nanospheres to nanowires. ChemPlusChem 82:631–637Google Scholar
  18. 18.
    Yang X, He D, He X, Wang K, Tang J, Zou Z, He X, Xiong J, Li L, Shangguan J (2016) Synthesis of hollow mesoporous silica nanorods with controllable aspect ratios for intracellular triggered drug release in cancer cells. ACS Appl Mater Interfaces 8:20558–20569Google Scholar
  19. 19.
    Croissant JG, Cattoën X, Wong Chi Man M, Durand JO, Khashab NM (2015) Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7:20318–20334Google Scholar
  20. 20.
    Bürglová K, Noureddine A, Hodačová J, Toquer G, Cattoën X, Wong Chi Man M (2014) A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas. Chem Eur J 20:10371–10382Google Scholar
  21. 21.
    Noureddine A, Trens P, Toquer G, Cattoën X, Wong Chi Man M (2014) Tailoring the hydrophilic/lipophilic balance of clickable mesoporous organosilicas by the copper-catalyzed azide–alkyne cycloaddition click-functionalization. Langmuir 30:12297–12305Google Scholar
  22. 22.
    Sun B, Pokhrel S, Dunphy DR, Zhang H, Ji Z, Wang X, Wang M, Liao YP, Chang CH, Dong J, Li R, Mädler L, Brinker CJ, Nel AE, Xia T (2015) Reduction of acute inflammatory effects of fumed silica nanoparticles in the lung by adjusting silanol display through calcination and metal doping. ACS Nano 9:9357–9372Google Scholar
  23. 23.
    Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, Xue M, Wang X, Lin S, Ji Z, Li R, Garcia FL, Yang J, Kirk ML, Xia T, Zink JI, Nel A, Brinker CJ (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134:15790–15804Google Scholar
  24. 24.
    Noureddine A, Brinker CJ (2018) Pendant/bridged/mesoporous silsesquioxane nanoparticles: versatile and biocompatible platforms for smart delivery of therapeutics. Chem Eng J 340:125–147Google Scholar
  25. 25.
    Ruehle B, Saint-Cricq P, Zink JI (2016) Externally controlled nanomachines on mesoporous silica nanoparticles for biomedical applications. ChemPhysChem 17:1769–1779Google Scholar
  26. 26.
    Ferris DP, Zhao YL, Khashab NM, Khatib HA, Stoddart JF, Zink JI (2009) Light-operated mechanized nanoparticles. J Am Chem Soc 131:1686–1688Google Scholar
  27. 27.
    Noureddine A, Gary‐Bobo M, Lichon L, Garcia M, Zink JI, Wong Chi Man M, Cattoën X (2016) Bis‐clickable mesoporous silica nanoparticles: straightforward preparation of light‐actuated nanomachines for controlled drug delivery with active targeting. Chem Eur J 22:9624–9630Google Scholar
  28. 28.
    Croissant JG, Zink JI, Raehm L, Durand JO (2018) Two‐photon‐excited silica and organosilica nanoparticles for spatiotemporal cancer treatment. Adv Healthc Mater 7:1701248Google Scholar
  29. 29.
    Omar H, Croissant JG, Alamoudi K, Alsaiari S, Alradwan I, Majrashi MA, Anjum DH, Martins P, Laamarti R, Eppinger J, Moosa B, Almalik A, Khashab NM (2017) Biodegradable magnetic silica@iron oxide nanovectors with ultra-large mesopores for high protein loading, magnetothermal release, and delivery. J Control Rel 259:187–194Google Scholar
  30. 30.
    Baeza A, Guisasola E, Ruiz-Hernandez E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524Google Scholar
  31. 31.
    Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625Google Scholar
  32. 32.
    Lee BY, Li Z, Clemens DL, Dillon BJ, Hwang AA, Zink JI, Horwitz MA (2016) Redox‐triggered release of moxifloxacin from mesoporous silica nanoparticles functionalized with disulfide snap‐tops enhances efficacy against pneumonic tularemia in mice. Small 12:3690–3702Google Scholar
  33. 33.
    Croissant JG, Fatieiev Y, Julfakyan K, Lu J, Emwas AH, Anjum DH, Omar H, Tamanoi F, Zink JI, Khashab NM (2016) Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chem Eur J 22:14806–14811Google Scholar
  34. 34.
    Llopis-Lorente A, Lozano-Torres B, Bernardos A, Martínez-Máñez R, Sancenón F (2017) Mesoporous silica materials for controlled delivery based on enzymes. J Mater Chem B 5:3069–3083Google Scholar
  35. 35.
    Wan X, Zhang G, Liu S (2011) pH-disintegrable polyelectrolyte multilayer-coated mesoporous silica nanoparticles exhibiting triggered co-release of cisplatin and model drug molecules. Macromol Rapid Commun 32:1082–1089Google Scholar
  36. 36.
    Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, Zink JI, Nel AE (2010) Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 132:12690–12697Google Scholar
  37. 37.
    Croissant JG, Zhang D, Alsaiari S, Lu J, Deng L, Tamanoi F, AlMalik AM, Zink JI, Khashab NM (2016) Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J Control Rel 229:183–191Google Scholar
  38. 38.
    Croissant JG, Fatieiev Y, Omar H, Anjum DH, Gurinov A, Lu J, Tamanoi F, Zink JI, Khashab NM (2016) Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chem Eur J 22:9607–9615Google Scholar
  39. 39.
    Liu J, Stace-Naughton A, Jiang X, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131:1354Google Scholar
  40. 40.
    Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Chackerian CL, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397Google Scholar
  41. 41.
    Villegas MR, Baeza A, Noureddine A, Durfee PN, Butler KS, Agola JO, Brinker CJ, Vallet-Regí M (2017) Multifunctional protocells for enhanced penetration in 3D extracellular tumoral matrices. Chem Mater 30:112–120Google Scholar
  42. 42.
    Liu J, Jiang X, Ashley C, Brinker CJ (2009) Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J Am Chem Soc 131:7567Google Scholar
  43. 43.
    Judeinstein P, Sanchez C (1996) Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem 6:511–525Google Scholar
  44. 44.
    Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, Donahue T, Nel AE, Meng H (2016) Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 10:2702–2715Google Scholar
  45. 45.
    Epler K, Padilla D, Phillips G, Crowder P, Castillo R, Wilkinson D, Wilkinson B, Burgard C, Kalinich R, Townson J, Chackerian B (2012) Delivery of ricin toxin a‐chain by peptide‐targeted mesoporous silica nanoparticle‐supported lipid bilayers. Adv Healthc Mater 1:348–353Google Scholar
  46. 46.
    Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9:3540–3557Google Scholar
  47. 47.
    Slaughter BV, Lino CA, McBride AA, Fleig PF, Conroy MA, Melo CF, Wilkinson BS, Garcia GU, Wu TU, Adolphi NU, Reed S (2016) Mesoporous silica nanoparticle-supported lipid bilayers for targeted antibiotic therapeutics. Sandia National Laboratories (SNL-NM), Albuquerque, NMGoogle Scholar
  48. 48.
    Dengler EC, Liu J, Kerwin A, Torres S, Olcott CM, Bowman BN, Armijo L, Gentry K, Wilkerson J, Wallace J, Jiang X, Carnes EC, Brinker CJ, Milligan ED (2013) Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J Control Rel 168:209–224Google Scholar
  49. 49.
    Zhao D, Feng J, Huo Q, Melosh N, Frederickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552Google Scholar
  50. 50.
    Knezevic NZ, Durand J-O (2015) Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale 7:2199–2209Google Scholar
  51. 51.
    Yang J, Zhang F, Li W, Gu D, Shen D, Fan J, Zhang WX, Zhao D (2014) Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem Commun 50:713–715Google Scholar
  52. 52.
    Shin H-S, Hwang Y-K, Huh S (2014) Facile preparation of ultra-large pore mesoporous silica nanoparticles and their application to the encapsulation of large guest molecules. ACS Appl Mater Interfaces 6:1740–1746Google Scholar
  53. 53.
    Gao Z, Zharov I (2014) Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule, tannic acid. Chem Mater 26:2030–2037Google Scholar
  54. 54.
    Mandal M, Manchanda AS, Zhuang J, Kruk M (2012) Face-centered-cubic large-pore periodic mesoporous organosilicas with unsaturated and aromatic bridging groups. Langmuir 28:8737–8745Google Scholar
  55. 55.
    Rosenholm JM, Zhang J, Sun W, Gu H (2011) Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microporous Mesoporous Mater 145:14–20Google Scholar
  56. 56.
    Gao F, Botella P, Corma A, Blesa J, Dong L (2009) Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J Phys Chem B 113:1796–1804Google Scholar
  57. 57.
    Zhang J, Li X, Rosenholm JM, Gu H-c (2011) Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. J Colloid Interface Sci 361:16–24Google Scholar
  58. 58.
    Wu M, Meng Q, Chen Y, Zhang L, Li M, Cai X, Li Y, Yu P, Zhang L, Shi J (2016) Large pore‐sized hollow mesoporous organosilica for redox‐responsive gene delivery and synergistic cancer chemotherapy. Adv Mater 28:1963–1969Google Scholar
  59. 59.
    Chen Y, Chu C, Zhou Y, Ru Y, Chen H, Chen F, He Q, Zhang Y, Zhang L, Shi J (2011) Reversible pore‐structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting. Small 7:2935–2944Google Scholar
  60. 60.
    Wu M, Meng Q, Chen Y, Du Y, Zhang L, Li Y, Zhang L, Shi J (2015) Large‐pore ultrasmall mesoporous organosilica nanoparticles: micelle/precursor co‐templating assembly and nuclear‐targeted gene delivery. Adv Mater 27:215–222Google Scholar
  61. 61.
    Song HM, Zink JI, Khashab NM (2015) Engineering the internal structure of magnetic silica nanoparticles by thermal control. Part Part Syst Charact 32:307–312Google Scholar
  62. 62.
    Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, Chen L, Wang R, Zhang F, Zhao D (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14:923–932Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Achraf Noureddine
    • 1
  • Elizabeth A. Hjelvik
    • 1
  • Jonas G. Croissant
    • 1
  • Paul N. Durfee
    • 1
  • Jacob O. Agola
    • 1
  • C. Jeffrey Brinker
    • 1
    • 2
    Email author
  1. 1.Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.Center for Micro-Engineered Materials, Advanced Materials LaboratoryUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations