Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 284–294 | Cite as

Broad spectrum antimicrobial activity of Ca(Zn(OH)3)2·2H2O and ZnO nanoparticles synthesized by the sol–gel method

  • M. Soria-Castro
  • S. C. De la Rosa-GarcíaEmail author
  • P. QuintanaEmail author
  • S. Gómez-Cornelio
  • A. Sierra-Fernandez
  • N. Gómez-Ortíz
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications


The process of biodeterioration is one of the main problems affecting historical monuments and buildings. On rock surfaces, different types of microorganisms establish in the most adequate niches and accelerate degradation, leading to the irreversible loss of cultural heritage. Therefore, new ways to preserve cultural heritage must be urgently studied to prevent such damage. In this study, the broad-spectrum antimicrobial activity of calcium zinc hydroxide dehydrate [Ca(Zn(OH)3)2·2H2O] (CZ) and zinc oxide (ZnO) nanoparticles synthesized by the sol–gel method is examined against fungal and bacterial model organisms. The selected microbes were inhibited by both nanoparticles, yet CZ was the most effective, with a bactericidal activity of 1.25 to 5 mg/mL and a fungicidal activity of 0.625 mg/mL. Both nanoparticles caused structural damage to the evaluated fungal cells, resulting in morphological changes and affecting the germination of conidia. For the first time in the literature, the antibacterial activity and the mode of action of CZ are reported. In conclusion, CZ nanoparticles are shown to be potential candidates for the treatment of rock surfaces of built cultural heritage.


  • A dose–response effect was observed in the inhibition of microbial growth by nanoparticles.

  • Calcium zinc hydroxide dehydrate showed greater diffusion in the agar with respect to zinc oxide.

  • Calcium zinc hydroxide dehydrate exhibited bactericidal and fungicidal activity in the tested models.

  • The evaluated nanoparticles caused irreversible damage to the conidia of fungi.


Ca(Zn(OH)3)2·2H2O and ZnO NPs Antimicrobial properties MIC Agar-well diffusion method Biodeterioration Structural damage 



We are grateful for the financial support of the National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología [CONACyT]) of the “Fronteras de la Ciencia 138” project. Technical assistance in SEM and XRD analyses was provided by Ana R. Cristobal, Dora A. Huerta, and D. Aguilar at LANNBIO (CINVESTAV, Mérida). Also, we thank T. López for the technical assistance provided during the antimicrobial assays and S. García López and L. Díaz Flores for their support with TEM-SAED (Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco). Additional thanks are extended to CONACyT for the doctoral scholarship granted to MSC 282192.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kumar K, Kumar AV (1999) Biodeterioration of stone in tropical environments: An overview. Research in conservation series. The Getty Conservation Institute, Los AngelesGoogle Scholar
  2. 2.
    Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art — tilting at windmills. Appl Microbiol Biotechnol 97:9637–9646CrossRefGoogle Scholar
  3. 3.
    Baglioni P, Chelazzi D, Giorgi R (2015) Innovative Nanomaterials: Principles, Availability and Scopes. In: Baglioni P, Chelazzi D, Giorgi R (eds) Nanotechnologies in the conservation of cultural heritage. Dordrecht: Springer, pp 1–13Google Scholar
  4. 4.
    Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368CrossRefGoogle Scholar
  5. 5.
    Gadd GM, Dyer TD (2017) Bioprotection of the built environment and cultural heritage. Microb biothecnol 10:1152–1156Google Scholar
  6. 6.
    Herrera LK, Videla HA (2004) The importance of atmospheric effects on biodeterioration of cultural heritage constructional materials. Int Biodeterior Biodegrad 54:125–134CrossRefGoogle Scholar
  7. 7.
    Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139CrossRefGoogle Scholar
  8. 8.
    McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451CrossRefGoogle Scholar
  9. 9.
    Jurado V, Miller AZ, Cuezva S, Fernandez-Cortes A, Benavente D, Rogerio-Candelera MA, Reyes J, Cañaveras JC, Sanchez-Moral S, Saiz-Jimenez C (2014) Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche (Mexico): A case of tertiary bioreceptivity Constr Build Mater 53:348–359CrossRefGoogle Scholar
  10. 10.
    Gadd GM (2017) Geomicrobiology of the built environment. Nat Microbiol 2:16275CrossRefGoogle Scholar
  11. 11.
    Gadd GM (2017) Fungi, rocks and minerals. Elements 13:171–176CrossRefGoogle Scholar
  12. 12.
    Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55CrossRefGoogle Scholar
  13. 13.
    Ortega-Morales BO, Narváez-Zapata J, Reyes-Estebanez M, Quintana P, De la Rosa-García SC, Bullen H, Gómez-Cornelio S, Chan-Bacab MJ (2016) Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front Microbiol 7:201CrossRefGoogle Scholar
  14. 14.
    Morón-Ríos A, Gómez-Cornelio S, Ortega-Morales BO, De la Rosa-García S, Partida-Martínez LP, Quintana P, Alayon-Gamboa JA, Cappello-Garcia S, González-Gómez S (2017) Interactions between abundant fungal species influence the fungal community assemblage on limestone. PLoS ONE 12:e0188443CrossRefGoogle Scholar
  15. 15.
    Baglioni P, Carretti E, Chelazzi D (2015) Nanomaterials in art conservation. Nat Nanotechnol 10:287CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Navarro C, Ruiz-Agudo E, Ortega-Huertas M, Hansen E (2005) Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir 21:10948–10957CrossRefGoogle Scholar
  17. 17.
    Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Herit 7:49–55CrossRefGoogle Scholar
  18. 18.
    Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 9:24873–24886CrossRefGoogle Scholar
  19. 19.
    Lanzón M, Madrid JA, Martínez-Arredondo A, Mónaco S (2017) Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl Surf Sci 424:20–27CrossRefGoogle Scholar
  20. 20.
    Borsoi G, Lubelli B, Hees RV, Veiga R, Silva AS (2017) Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr Build Mater 142:385–394CrossRefGoogle Scholar
  21. 21.
    Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci 392:42–49CrossRefGoogle Scholar
  22. 22.
    Baglioni P, Giorgi R (2006) Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2:293–303CrossRefGoogle Scholar
  23. 23.
    Mohammadi Z, Shalavi S, Yazdizadeh M (2012) Antimicrobial activity of calcium hydroxide in endodontics: a review. Chonnam Med J 48(3):133–140CrossRefGoogle Scholar
  24. 24.
    Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Mukhopadhyay AK (2017) ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. J Mech Behav Biomed Mater 72:110–128CrossRefGoogle Scholar
  25. 25.
    Valentin N (1986) Biodeterioration of library materials disinfection methods and new alternatives. Pap Conserv 10(1):40–45CrossRefGoogle Scholar
  26. 26.
    Sequeira SO, Laia CAT, Phillips AJL, Cabrita EJ, Macedo MF (2017) Clotrimazole and calcium hydroxide nanoparticles: A low toxicity antifungal alternative for paper conservation. J Cult Herit 24:45–52CrossRefGoogle Scholar
  27. 27.
    Daniele V, Taglieri G, Quaresima R (2008) The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process. J Cult Herit 9:294–301CrossRefGoogle Scholar
  28. 28.
    Jehad MY, Enas ND (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci 2:38–42Google Scholar
  29. 29.
    Pasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morliere C, Bolzinger MA (2014) Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties. Int J Pharm 460:92–100CrossRefGoogle Scholar
  30. 30.
    Kumara R, Umarb A, Kumara G, Nalwad HS (2017) Antimicrobial properties of ZnO nanomaterials: A review. Ceram Int 43:3940–3961CrossRefGoogle Scholar
  31. 31.
    Gomez-Ortiz N, De la Rosa-Garcia SC, Gonzalez-Gomez WS, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales BO (2013) Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments ACS Appl Mater Interfaces 5:1556–1565CrossRefGoogle Scholar
  32. 32.
    Gómez-Ortíz NM, González-Gómez WS, De la Rosa-García SC, Oskam G, Quintana P, Soria-Castro M, Gómez-Cornelio S, Ortega-Morales BO (2014) Antifungal activity of Ca[Zn(OH)3]2·2H2O coatings for the preservation of limestone monuments: An in vitro study. Int Biodeterior Biodegrad 91:1–8CrossRefGoogle Scholar
  33. 33.
    Zare Khafri H, Ghaedi M, Asfaram A, Javadian H, Safarpoor M (2018) Synthesis of CuS and ZnO/Zn(OH)2 nanoparticles and their evaluation for in vitro antibacterial and antifungal activities Appl Organomet Chem e4398Google Scholar
  34. 34.
    De la Rosa-García SC, Fuentes AF, Gómez-Cornelio S, Zagada-Martínez U, Quintana P (2018) Structural characterization of antifungal CaZn2(OH)6·2H2O nanoparticles obtained via mechanochemical processing J Mater Sci 53:13758–13768CrossRefGoogle Scholar
  35. 35.
    Gómez-Cornelio S, Ortega-Morales O, Morón-Ríos A, Reyes-Estebanez M, De la Rosa-García S (2016) Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico. Acta Bot Mex 117:59–77CrossRefGoogle Scholar
  36. 36.
    Schmidt WH, Moyer AJ (1994) Penicillin: I. Methods of assay. J Bacteriol 47:199–209Google Scholar
  37. 37.
    CLSI (1999) Methods for determining bactericidal activity of antimicrobial agents, approved guideline. CLSI document M26-A. CLSI, Wayne, PAGoogle Scholar
  38. 38.
    Siddique S, Shah ZH, Shahid S, Yasmin F (2013) Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov 60:660–665Google Scholar
  39. 39.
    Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5:1368–1373Google Scholar
  40. 40.
    Tayel AA, Eltras WF, Moussa S, Elbaz AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31:211–218CrossRefGoogle Scholar
  41. 41.
    Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future Int J Nanomed 12:1227–1249CrossRefGoogle Scholar
  42. 42.
    Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, Chen Q, Huang M (2014) Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater 10:015001CrossRefGoogle Scholar
  43. 43.
    Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809CrossRefGoogle Scholar
  44. 44.
    Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci 22:693–700CrossRefGoogle Scholar
  45. 45.
    Sharma RK, Ghose R (2015) Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram Int 41:967–975CrossRefGoogle Scholar
  46. 46.
    He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215CrossRefGoogle Scholar
  47. 47.
    Gambino M, Ahmed MAAA, Villa F, Cappitelli F (2017) Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. Int Biodeterior Biodegrad 122:92–99CrossRefGoogle Scholar
  48. 48.
    Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18:120–128CrossRefGoogle Scholar
  49. 49.
    Yousef JM, Danial EN (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci 2:38–42Google Scholar
  50. 50.
    Sonohara R, Muramatsu N, Ohshima H, Kondo T (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 55:273–277CrossRefGoogle Scholar
  51. 51.
    Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813CrossRefGoogle Scholar
  52. 52.
    Jiang HS, Yin LY, Ren NN, Zhao ST, Li Z, Zhi Y, Shao H, Li W, Gontero B (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11:157–167CrossRefGoogle Scholar
  53. 53.
    Ditaranto N, van der Werf ID, Picca RA, Sportelli MC, Giannossa LC, Bonerba E, Tantillo G, Sabbatini L (2015) Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J Chem 39:6836–6843CrossRefGoogle Scholar
  54. 54.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118CrossRefGoogle Scholar
  55. 55.
    Sardella D, Gatt R, Valdramidis VP (2017) Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res Int 101:274–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física AplicadaCINVESTAV-IPN, A.P. 73, CordemexMéridaMexico
  2. 2.Laboratorio de Microbiología Aplicada, División Académica de Ciencias BiológicasUniversidad Juárez Autónoma de Tabasco, Km. 0.5 Carretera Villahermosa-CardenasVillahermosaMexico
  3. 3.Universidad Politécnica del Centro, Km. 22.5 Carretera Federal Villahermosa-Teapa, Tumbulushal, CentroVillahermosaMexico
  4. 4.Instituto de Geociencias (CSIC, UCM)MadridSpain
  5. 5.Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad UniversitariaMoreliaMexico

Personalised recommendations