Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 205–215 | Cite as

Structuring of di-alkyl-urethanesils

  • M. C. GonçalvesEmail author
  • R. F. P. Pereira
  • P. Ferreira
  • E. Carbó-Argibay
  • J. Catita
  • G. Toquer
  • S. C. Nunes
  • V. de Zea Bermudez
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


A novel organized di-urethane crossed-linked dodecyl/siloxane (di-alkyl-urethanesil) was synthesized by the sol–gel process and self-directed assembly, from the organosilane precursor (CH3CH2O)3-Si-(CH2)3-NHC( = O)O-(CH2)12-O(O = C)NH-(CH2)3-Si-(OCH2CH3)3, through a fine control of the reaction conditions (hyper-stoichiometric amount of water, minor amount of tetrahydrofuran, and acid catalysis; molar ratio Si:H2O:HCl:THF = 1:300:0.1:12.5). The new bridged silsesquioxane was identified by the notation d-Ut(CY)AC, where Y = 12 is the number of carbon atoms C of the bridging alkyl chains and AC represents acid catalysis. The d-Ut(C12)AC material exhibits a structured lamellar organization with medium long-range order, a texture composed of homogeneous lamellae immersed in a sponge-like matrix made of randomly distributed thin plates, and is thermally stable up to ca. 350 °C. Despite the hydrophobic nature of the dodecane chains, the weakness of the urethane–urethane hydrogen-bonded array formed led to the growth of moderately ordered assemblies of amphiphilic organo(bis-silanetriol) substructures comprising mainly all-trans conformers.

A lamellar di-urethane cross-linked dodecyl/siloxane (di-alkyl-urethanesil) with medium long-range order, a texture composed of homogeneous lamellae immersed in a sponge-like matrix made of randomly distributed thin plates, and an average water contact angle of 94.17 ± 17.10°, was synthesized by the sol–gel process and self-directed assembly.


  • A di-urethane crossed-linked dodecyl/siloxane was produced using a controlled hydrolytic sol–gel route.

  • The material exhibits a structured lamellar organization with medium long-range order.

  • The morphology of the material includes homogeneous lamellae immersed in a sponge-like matrix.

  • The material is thermally stable up to ca. 350 °C.


Sol–gel chemistry Self-assembly Bridged silsesquioxane Structuring Di-alkyl-urethanesil 



This work was supported by FEDER, through COMPETE and Fundação para a Ciência e a Tecnologia (FCT) (Pest-OE/QUI/UI0616/2014 and PEst-OE/SAU/UI0709/2014) and LUMECD project (POCI-01-0145-FEDER-016884 and PTDC/CTM-NAN/0956/2014), project UniRCell (Ref. SAICTPAC/0032/2015, POCI-01-0145-FEDER-016422). S.C. Nunes and R.F.P. Pereira acknowledge Post-PhD Fellowships of LUMECD project and SFRH/BPD/87759/2012 grant, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

I hereby declare that the present manuscript is completely original and has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full). No reported data have been fabricated or manipulated (including images) to support our conclusions. This research did not involve Human Participants and/or Animals.

Informed consent

All the co-authors have been informed of the content of the final version and I received their consent to submit it.


  1. 1.
    Liu N, Yu K, Smarsly B, Dunphy DR, Jiang Y-B, Brinker CJ (2002) Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. J Am Chem Soc 124:14540–14541CrossRefGoogle Scholar
  2. 2.
    Graffion J, Cattoën X, Wong Chi Man M, Fernandes VR, André PS, Ferreira RAS, Carlos LD (2011) Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu3+-complexed n,n′-diureido-2,2′-bipyridine isomers: application for luminescent solar concentrators. Chem Mater 23:4773–4782CrossRefGoogle Scholar
  3. 3.
    Li C, Wilkes GL (2000) Morphology of inorganic-organic hybrid materials derived from triethoxysilylated diethylenetriamine and tetramethoxysilane. J Macromol Sci Pure Appl Chem 37:549–571CrossRefGoogle Scholar
  4. 4.
    Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality. J Am Chem Soc 122:5258–5261CrossRefGoogle Scholar
  5. 5.
    Arkles B (1999) Hybrid polymers in the marketplace - mix and match molecular building blocks to create better contact lenses, smoother-sailing ships, slippery surfaces, and move. Chemtech 29:7–14Google Scholar
  6. 6.
    Lindner E, Auer F, Baumann A, Wegner P, Mayer HA, Bertagnolli H, Reinöhl U, Ertel TS, Weber A (2000) Supported organometallic complexes. Part XX. Hydroformylation of olefins with rhodium(I) hybrid catalysts. J Mol Catal A-Chem 157:97–109CrossRefGoogle Scholar
  7. 7.
    Adima A, Moreau JJE, Man MWC (2000) Immobilization of rhodium complexes in chiral organic–inorganic hybrid materials. Chirality 12:411–420CrossRefGoogle Scholar
  8. 8.
    Hesemann P, Moreau JJE (2000) Novel silica-based hybrid materials incorporating binaphthyl units: a chiral matrix effect in heterogeneous asymmetric catalysis. Tetrahedron: Asymmetry 11:2183–2194CrossRefGoogle Scholar
  9. 9.
    Bied C, Gauthier D, Moreau JJE, Chi Man MW (2001) Preparation and characterization of new templated hybrid materials containing a chiral diamine ligand. J Sol-Gel Sci Technol 20:313–320CrossRefGoogle Scholar
  10. 10.
    Lindner E, Salesch T, Brugger S, Hoehn F, Wegner P, Mayer HA (2002) Supported organometallic complexes: Part XXX. Hydroformylation of 1-hexene in interphases—the influence of different kinds of inorganic–organic hybrid co-condensation agents on the catalytic activity. J Organomet Chem 641:165–172CrossRefGoogle Scholar
  11. 11.
    Creff G, Pichon BP, Blanc C, Maurin D, Sauvajol J-L, Carcel C, Moreau JJE, Roy P, Bartlett JR, Wong Chi Man M, Bantignies J-L (2013) Self-assembly of bridged silsesquioxanes: modulating structural evolution via cooperative covalent and noncovalent interactions. Langmuir 29:5581–5588CrossRefGoogle Scholar
  12. 12.
    Shea KJ, Moreau J, Loy DA, Corriu RJP, Boury B (2005) In: Gómez‐Romero P, Sanchez C (ed) Functional hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  13. 13.
    Shea KJ, Loy DA (2001) Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials, Chem Mater, 13, 3306–3319Google Scholar
  14. 14.
    Loy DA, Jamison GM, Baugher BM, Myers SA, Assink RA, Shea KJ (1996) Sol−gel synthesis of hybrid organic−inorganic materials. Hexylene- and phenylene-Bridge polysiloxanes. Chem Mater 8:656–663CrossRefGoogle Scholar
  15. 15.
    Cerveau G, Corriu RJP, Lepeytre C (1997) Organic-inorganic hybrid silica. Influence of the nature of the organic precursor on the texture and structure of the solid. J Organomet Chem 548:99–103CrossRefGoogle Scholar
  16. 16.
    Cerveau G, Corriu RJP (1998) Some recent developments of polysilsesquioxanes chemistry for material science. Coord Chem Rev 178:1051–1071CrossRefGoogle Scholar
  17. 17.
    Cerveau G, Corriu RJP, Framery E (2001) Nanostructured organic-inorganic hybrid materials: kinetic control of the texture. Chem Mater 13:3373–3388CrossRefGoogle Scholar
  18. 18.
    Cerveau G, Corriu RJP, Framery E, Ghosh S, Mutin HP (2002) Hybrid materials and silica: drastic control of surfaces and porosity of xerogels via ageing temperature, and influence of drying step on polycondensation at silicon. J Mater Chem 12:3021–3026CrossRefGoogle Scholar
  19. 19.
    Boury B, Ben F, Corriu RJP (2001) Hydrolysis/polycondensation in the solid state: access to crystalline silica-based hybrid materials. Angew Chem-Int Ed. 40:2853–2856CrossRefGoogle Scholar
  20. 20.
    Moreau JJE, Vellutini L, Chi Man MW, Bied C, Bantignies J-L, Dieudonné P, Sauvajol J-L (2001) Self-organized hybrid silica with long-range ordered lamellar structure. J Am Chem Soc 123:7957–7958CrossRefGoogle Scholar
  21. 21.
    Moreau JJE, Vellutini L, Bied C, Man MWC (2004) New approach for the organisation and the shaping of organo-bridged silicas: an overview. J Sol-Gel Sci Technol 31:151–156CrossRefGoogle Scholar
  22. 22.
    Moreau JJE, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies J-L, Sauvajol J-L (2005) Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions. Chemistry 11:1527–1537CrossRefGoogle Scholar
  23. 23.
    Moreau JJE, Pichon BP, Wong Chi Man M, Bied C, Pritzkow H, Bantignies J-L, Dieudonné P, Sauvajol J-L (2004) A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem Int Ed 43:203–206CrossRefGoogle Scholar
  24. 24.
    Moreau JJE, Pichon BP, Bied C, Man MWC (2005) Structuring of bridged silsesquioxanes via cooperative weak interactions: H-bonding of urea groups and hydrophobic interactions of long alkylene chains. J Mater Chem 15:3929–3936CrossRefGoogle Scholar
  25. 25.
    Zhou X, Yang S, Yu C, Li Z, Yan X, Cao Y, Zhao D (2006) Hexylene- and octylene-bridged polysilsesquioxane hybrid crystals self-assembled by dimeric building blocks with ring structures. Chemistry 12:8484–8490CrossRefGoogle Scholar
  26. 26.
    Nobre SS, Brites CDS, Ferreira RAS, de Zea Bermudez V, Carcel C, Moreau JJE, Rocha J, Wong Chi Man M, Carlos LD (2008) Photoluminescence of Eu(III)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. J Mater Chem 18:4172–4182CrossRefGoogle Scholar
  27. 27.
    Nobre SS, Cattoën X, Ferreira RAS, Carcel C, de Zea Bermudez V, Wong Chi Man M, Carlos LD (2010) Eu3+-assisted short-range ordering of photoluminescent bridged silsesquioxanes. Chem Mater 22:3599–3609CrossRefGoogle Scholar
  28. 28.
    Besson E, Mehdi A, Reye C, Gaveau P, Corriu RJP (2010) Self-assembly of layered organosilicas based on weak intermolecular interactions. Dalton Trans 39:7534–7539CrossRefGoogle Scholar
  29. 29.
    Fernandes M, Nobre SS, Xu QH, Carcel C, Cachia JN, Cattoen X, Sousa JM, Ferreira RAS, Carlos LD, Santilli CV, Man MWC, Bermudez VD (2011) Self-structuring of lamellar bridged silsesquioxanes with long side spacers. J Phys Chem B 115:10877–10891CrossRefGoogle Scholar
  30. 30.
    Nunes SC, Hummer J, Freitas VT, Ferreira RAS, Carlos LD, Almeida P, de Zea Bermudez V (2015) Di-amidosils with tunable structure, morphology and emission quantum yield: the role of hydrogen bonding. J Mater Chem C 3:6844–6861CrossRefGoogle Scholar
  31. 31.
    Fernandes M, Cattoen X, de Zea Bermudez V, Chi Man MW (2011) Solvent-controlled morphology of lamellar silsesquioxanes: from platelets to microsponges. Cryst Eng Comm 13:1410–1415CrossRefGoogle Scholar
  32. 32.
    Pereira RFP, Nunes SC, Toquer G, Cardoso MA, Valente AJM, Ferro MC, Silva MM, Carlos LD, Ferreira RAS, de Zea Bermudez V (2018) Novel highly luminescent amine-functionalized bridged silsesquioxanes. Front Chem 5:31Google Scholar
  33. 33.
    Nunes SC, de Zea Bermudez V (2018) Structuring of cross-linked non-bridged and bridged amide alkyl-based silsesquioxanes. Chem Rec Accepted for publication, 18, 1–14Google Scholar
  34. 34.
    Carlos LD, de Zea Bermudez V, Amaral VS, Nunes SC, Silva NJO, Sá Ferreira RA, Rocha J, Santilli CV, Ostrovskii D (2007) Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkyl/siloxane hybrids. Adv Mater 19:341–348CrossRefGoogle Scholar
  35. 35.
    Nunes SC, Silva NJO, Hummer J, Ferreira RAS, Almeida P, Carlos LD, de Zea Bermudez V (2012) Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Adv 2:2087–2099CrossRefGoogle Scholar
  36. 36.
    Nunes SC, de Zea Bermudez V, Cybinska J, Sa Ferreira RA, Legendziewicz J, Carlos LD, Silva MM, Smith MJ, Ostrovskii D, Rocha J (2005) Structure and photoluminescent features of di-amide cross-linked alkylene-siloxane hybrids. J Mater Chem 15:3876–3886CrossRefGoogle Scholar
  37. 37.
    Born L, Hespe H (1985) On the physical crosslinking of amine-extended polyurethane urea elastomers: a crystallographic analysis of bis-urea from diphenyl methane-4-isocyanate and 1,4-butane diamine. Colloid Polym Sci 263:335–341CrossRefGoogle Scholar
  38. 38.
    Chang YL, West MA, Fowler FW, Lauher JW (1993) An approach to the design of molecular solids. Strategies for controlling the assembly of molecules into two-dimensional layered structures. J Am Chem Soc 115:5991–6000CrossRefGoogle Scholar
  39. 39.
    de Loos M, van Esch J, Stokroos I, Kellogg RM, Feringa BL (1997) Remarkable stabilization of self-assembled organogels by polymerization. J Am Chem Soc 119:12675–12676CrossRefGoogle Scholar
  40. 40.
    van Esch J, Kellogg RM, Feringa BL (1997) Di-urea compounds as gelators for organic solvents. Tetrahedron Lett 38:281–284CrossRefGoogle Scholar
  41. 41.
    Nunes SC, Bermudez VDZ, Cybinska J, Ferreira RAS, Legendziewicz J, Carlos LD, Silva MM, Smith MJ, Ostrovskii D, Rocha J (2005) Structure and photoluminescent features of di-amide cross-linked alkylene siloxane hybrids. J Mater Chem 15:3876–3886CrossRefGoogle Scholar
  42. 42.
    de Monredon-Senani S, Bonhomme C, Ribot F, Babonneau F (2009) Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidenced by Si-29 NMR. J Sol-Gel Sci Technol 50:152–157CrossRefGoogle Scholar
  43. 43.
    Clauss J, Schmidt-Rohr K, Adam A, Boeffel C, Spiess HW (1992) Stiff macromolecules with aliphatic side chains: side-chain mobility, conformation, and organization from 2D solid-state NMR spectroscopy. Macromolecules 25:5208–5214CrossRefGoogle Scholar
  44. 44.
    Parikh AN, Schivley MA, Koo E, Seshadri K, Aurentz D, Mueller K, Allara DL (1997) n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-octadecyltrichlorosilane. J Am Chem Soc 119:3135–3143CrossRefGoogle Scholar
  45. 45.
    Wang R, Baran G, Wunder SL (2000) Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir 16:6298–6305CrossRefGoogle Scholar
  46. 46.
    Earl WL, VanderHart DL (1979) Observations in solid polyethylenes by carbon-13 nuclear magnetic resonance with magic angle sample spinning. Macromolecules 12:762–767CrossRefGoogle Scholar
  47. 47.
    Nakamura N, Setodoi S (1997) 1,12-Dodecanediol. Acta Cryst C 53:1883–1885CrossRefGoogle Scholar
  48. 48.
    Carlos LD, de Zea Bermudez V, Sá Ferreira RA, Marques L, Assunção M (1999) Sol−gel derived urea cross-linked organically modified silicates. 2. Blue-light emission. Chem Mater 11:581–588CrossRefGoogle Scholar
  49. 49.
    Boehm C, Leveiller F, Jacquemain D, Moehwald H, Kjaer K, Als-Nielsen J, Weissbuch I, Leiserowitz L (1994) Packing characteristics of crystalline monolayers of fatty acid salts, at the air-solution interface, studied by grazing incidence x-ray diffraction. Langmuir 10:830–836CrossRefGoogle Scholar
  50. 50.
    Snyder RG, Strauss HL, Elliger CA (1982) Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J Phys Chem 86:5145–5150CrossRefGoogle Scholar
  51. 51.
    MacPhail RA, Strauss HL, Snyder RG, Elliger CA (1984) Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J Phys Chem 88:334–341CrossRefGoogle Scholar
  52. 52.
    Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568CrossRefGoogle Scholar
  53. 53.
    Venkataraman NV, Vasudevan S (2001) Interdigitation of an intercalated surfactant bilayer. J Phys Chem B 105:7639–7650CrossRefGoogle Scholar
  54. 54.
    Venkataraman NV, Bhagyalakshmi S, Vasudevan S, Seshadri R (2002) Conformation and orientation of alkyl chains in the layered organic-inorganic hybrids: (CnH2n+1NH3)2PbI4 (n = 12,16,18). Phys Chem Chem Phys 4:4533–4538CrossRefGoogle Scholar
  55. 55.
    Singh S, Wegmann J, Albert K, Müller K (2002) Variable temperature FT-IR studies of n-alkyl modified silica gels. J Phys Chem B 106:878–888CrossRefGoogle Scholar
  56. 56.
    Brown KG, Bicknell-Brown E, Ladjadj M (1987) Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids. J Phys Chem 91:3436–3442CrossRefGoogle Scholar
  57. 57.
    Skrovanek DJ, Howe SE, Painter PC, Coleman MM (1985) Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules 18:1676–1683CrossRefGoogle Scholar
  58. 58.
    Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157CrossRefGoogle Scholar
  59. 59.
    Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21:59–65CrossRefGoogle Scholar
  60. 60.
    Cerveau G, Corriu RJP, Dabiens B, Le Bideau J (2000) Synthesis of stable organo(bis-silanetriols): x-ray powder structure of 1,4-bis(trihydroxysilyl)benzene. Angew Chem Int Ed. 39:4533–4537CrossRefGoogle Scholar
  61. 61.
    Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100:31–50CrossRefGoogle Scholar
  62. 62.
    Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53:1466–1467CrossRefGoogle Scholar
  63. 63.
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Soc Faraday Trans 40:546–551CrossRefGoogle Scholar
  64. 64.
    Nunes SC, Ferreira CB, Ferreira RAS, Carlos LD, Ferro MC, Mano JF, Almeida P, de Zea Bermudez V (2014) Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Adv 4:59664–59675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.CQ-VRUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  3. 3.Chemistry Centre and Chemistry DepartmentUniversity of MinhoBragaPortugal
  4. 4.International Iberian Nanotechnology Laboratory – INLBragaPortugal
  5. 5.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  6. 6.Paralab SA and CEBIMED, Faculty of Health SciencesUniversity Fernando PessoaPortoPortugal
  7. 7.Institut de Chimie Séparative de Marcoule, UMR 5257CEA, CNRS, ENSCM, University of MontpellierMarcouleFrance
  8. 8.CICS—Health Sciences Research Center and Chemistry DepartmentUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations