Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 333–342 | Cite as

Chitosan-stabilized gold nanoparticles supported on silica/titania magnetic xerogel applied as antibacterial system

  • M. Deon
  • F. M. Morawski
  • C. Passaia
  • M. Dalmás
  • D. C. Laranja
  • P. S. Malheiros
  • S. Nicolodi
  • L. T. Arenas
  • T. M. H. Costa
  • E. W. de Menezes
  • E. V. BenvenuttiEmail author
Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • 441 Downloads

Abstract

The sol-gel method is an excellent choice to produce composite materials with enhanced performance by efficiently combining the individual features of their components. In this work, chitosan-stabilized gold nanoparticles (ChAuNPs) were immobilized onto a SiO2/TiO2 magnetic xerogel, which was synthesized through hetero-condensation of silica and titania precursors in the presence of magnetite particles covered with a silica shell. This system allies the antimicrobial capacity of ChAuNP, the surface reactivity of titania, porous structure of silica, and magnetic response of the magnetite particles. The magnetite phase was characterized by X-ray diffraction and the shape and size of the particles were observed by scanning and transmission electron microscopy. ChAuNPs were obtained in spherical shape with size below 10 nm, as characterized by UV–Vis spectroscopy and transmission electron microscopy. SiO2/TiO2 magnetic xerogel containing the ChAuNP was also characterized by thermogravimetric and textural analysis, transmission electron microscopy, and magnetism. The ChAuNP-SiO2/TiO2 magnetic xerogel is mesoporous with facile magnetic recovering and its performance as antimicrobial agent was assessed against the pathogen E. coli. The ChAuNP-SiO2/TiO2 magnetic xerogel presented inhibitory effect against the tested bacteria, even with such low gold content. After the magnetic recovering, the material was reused and maintained its antibacterial activity.

Highlights

  • Magnetic composite embedding magnetite particles in silica/titania network.

  • Adhesion of chitosan-stabilized gold nanoparticles to silica/titania surface.

  • Porous and high surface area material containing gold nanoparticles as antimicrobial agent.

  • Efficient and reusable antimicrobial system against E. coli bacteria.

Keywords

Core shell Magnetic composite Spherical metal nanoparticles Hybrid structure SiO2/TiO2 mixed oxide 

Notes

Acknowledgements

We thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for financial support and grants. We also thank CNANO (Centro de Nanociência e Nanotecnologia) and CMM (Centro de Microscopia e Microanálise) of UFRGS (Universidade Federal do Rio Grande do Sul).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Khan ST, Mussarat J, Al-Khedhairy AA (2016) Colloid Surf B 146:70–83CrossRefGoogle Scholar
  2. 2.
    Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Clin Microbiol Rev 26:822–880CrossRefGoogle Scholar
  3. 3.
    Lambrechts AA, Human IS, Doughari JH, Lues JFR (2014) Pak J Med Sci 30:755–758Google Scholar
  4. 4.
    Park J, Kim JS, Kim S, Shin E, Oh K-H, Kim Y, Kim CH, Hwang MA, Jin CM, Na K, Lee J, Cho E, Kang B-H, Kwak H-S, Seong WK, Kim J (2018) Int J Infect Dis 66:45–50.CrossRefGoogle Scholar
  5. 5.
    Vuthy Y, Lay KS, Seiha H, Kerleguer A, Aidara-Kane A (2017) Asian Pac J Trop Biomed 7:670–674CrossRefGoogle Scholar
  6. 6.
    Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y (2017) Int J Food Microbiol 249:44–52CrossRefGoogle Scholar
  7. 7.
    Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Molecules 21:836–866CrossRefGoogle Scholar
  8. 8.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Mater Sci Eng 44:278–284CrossRefGoogle Scholar
  9. 9.
    Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) Curr Drug Metab 18:120–128CrossRefGoogle Scholar
  10. 10.
    Raghunath A, Perumal E (2017) Int J Antimicrob Agent 49:137–152CrossRefGoogle Scholar
  11. 11.
    Pagno CH, Costa TMH, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Tosati JV, Monteiro AR, Rios AO, Flôres SH (2015) Food Chem 173:755–762CrossRefGoogle Scholar
  12. 12.
    Venkatesan R, Rajeswari N (2017) Polym Adv Technol 28:1699–1706CrossRefGoogle Scholar
  13. 13.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez (2008) Water Res 42:4591–4602CrossRefGoogle Scholar
  14. 14.
    Das SK, Das AR, Guha AK (2009) Langmuir 25:8192–8199CrossRefGoogle Scholar
  15. 15.
    Schneid AC, Roesch EW, Sperb F, Matte U, da Silveira NP, Costa TMH, Benvenutti EV, de Menezes EW (2014) J Mater Chem B 2:1079–1086CrossRefGoogle Scholar
  16. 16.
    Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R (2017) RSC Adv 7:51729–51743CrossRefGoogle Scholar
  17. 17.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2009) J Biomater Sci 20:2129–2144CrossRefGoogle Scholar
  18. 18.
    Zheng K, Setyawati MI, Leong DT, Xie J (2017) ACS Nano 11:6904–6910CrossRefGoogle Scholar
  19. 19.
    Singh A, Singh NB, Afzal S, Singh T, Hussain I (2018) J Mater Sci 53:185–201CrossRefGoogle Scholar
  20. 20.
    Sanmugam A, Vikraman D, Park HJ, Kim H-S (2017) Nanomaterials 7:363–377CrossRefGoogle Scholar
  21. 21.
    Kumar R, Umar A, Kumar G, Nalwa HS (2017) Ceram Int 43:3940–3961CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Xing Q, Janjanam J, He K, Long F, Low K-B, Tiwari A, Zhao F, Shahbazian-Yassar R, Friedrich C, Shokuhfar T (2014) Int J Nanomed 9:5177–5187Google Scholar
  23. 23.
    Wanag A, Rokicka P, Kusiak-Nejman E, Kapica-Kozar J, Wrobel RJ, Markowska-Szczupak A, Morawski AW (2018) Ecotox Environ Safe 147:788–793CrossRefGoogle Scholar
  24. 24.
    Fernandez-Moure JS, Evangelopoulos M, Colvill K, Van Eps JL, Tasciotti E (2017) Nanomedicine 12:1319–1334CrossRefGoogle Scholar
  25. 25.
    Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X (2012) Biomaterials 33:2327–2333CrossRefGoogle Scholar
  26. 26.
    Niemirowicz K, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias K, Bucki R, Car H (2014) Int J Nanomed 9:2217–2224CrossRefGoogle Scholar
  27. 27.
    Osonga FJ, Yazgan I, Kariuki V, Luther D, Jimenez A, Le P, Sadik OA (2016) RSC Adv 6:2302–2313CrossRefGoogle Scholar
  28. 28.
    Khan FU, Chen Y, Khan NU, Ahmad A, Tahir K, Khan ZU, Khan AU, Khan SU, Raza M, Wan P (2017) Microb Pathog 107:419–424CrossRefGoogle Scholar
  29. 29.
    Bui VKH, Park D, Lee Y-C (2017) Polymers 9:21–45CrossRefGoogle Scholar
  30. 30.
    Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  31. 31.
    Leiva A, Bonardd S, Pino M, Saldías C, Kortaberria G, Radic D (2015) Eur Polym J 68:419–431CrossRefGoogle Scholar
  32. 32.
    Ryan C, Alcock E, Buttimer F, Schmidt M, Clarke D, Pemble M, Bardosova M (2017) Sci Technol Adv Mat 18:528–540CrossRefGoogle Scholar
  33. 33.
    Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Bioresour Technol 88:179–184CrossRefGoogle Scholar
  34. 34.
    Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Mar Drugs 13:5156–5186CrossRefGoogle Scholar
  35. 35.
    Wang L, Hu C, Shao L (2017) Int J Nanomed 12:1227–1249CrossRefGoogle Scholar
  36. 36.
    Caldas EM, Novatzky D, Deon M, de Menezes EW, Hertz PF, Costa TMH, Arenas LT, Benvenutti EV (2017) Micro Mesopor Mater 247:95–102CrossRefGoogle Scholar
  37. 37.
    El Kadib A, Bousmina M (2012) Chem Eur J 18:8264–8277CrossRefGoogle Scholar
  38. 38.
    El Kadib A, Molvinger K, Cacciaguerra T, Bousmina M, Brunel D (2011) Micro Mesopor Mater 142:301–307CrossRefGoogle Scholar
  39. 39.
    Karthikeyan KT, Nithya A, Jothivenkatachalam K (2017) Int J Biol Macromol 104:1762–1773CrossRefGoogle Scholar
  40. 40.
    Li A, Jin Y, Muggli D, Pierce DT, Aranwela H, Marasinghe GK, Knutson T, Brockman G, Zhao JX (2013) Nanoscale 5:5854–5862CrossRefGoogle Scholar
  41. 41.
    Laranjo MT, Ricardi NC, Arenas LT, Benvenutti EV, Oliveira MC, Santos MJL, Costa TMH (2014) J Sol-Gel Sci Technol 72:273–281CrossRefGoogle Scholar
  42. 42.
    Park S, Park HH, Ko Y-S, Lee SJ, Le TS, Woo K, Ko G (2017) Sci Total Environ 609:289–296CrossRefGoogle Scholar
  43. 43.
    Teja AS, Koh P-Y (2009) Prog Cryst Growth Charact 55:22–45CrossRefGoogle Scholar
  44. 44.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62–69CrossRefGoogle Scholar
  45. 45.
    Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, NorcrossGoogle Scholar
  46. 46.
    Miles AAL, Misra SS (1938) J Hyg 38:732–749CrossRefGoogle Scholar
  47. 47.
    Silva N, Junqueira VCA, Silveira NFA, Taniwaki MH, Gomes RAR, Okazaki MM (2017) Manual de métodos de análise microbiológica de alimentos e água. Editora Blucher, São PauloGoogle Scholar
  48. 48.
    Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, MassachusettsGoogle Scholar
  49. 49.
    Laptash NM, Maslennikova IG, Kaidalova TA (1999) J Fluor Chem 99:133–137CrossRefGoogle Scholar
  50. 50.
    Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Springer, New YorkGoogle Scholar
  51. 51.
    Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  52. 52.
    Csáki A, Thiele M, Jatschka J, Dathe A, Zopf D, Stranik O, Fritzsche W (2015) Eng Life Sci 15:266–275CrossRefGoogle Scholar
  53. 53.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596–4605CrossRefGoogle Scholar
  54. 54.
    Ramos JVH, Morawski FM, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (2015) Micro Mesopor Mater 217:109–118CrossRefGoogle Scholar
  55. 55.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  56. 56.
    Harres A, Mikhov M, Skumryev V, de Andrade AMH, Schmidt JE, Geshev J (2016) J Magn Magn Mater 402:76–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de QuímicaUFRGS, CP 15003Porto Alegre – RSBrazil
  2. 2.Instituto de Ciência e Tecnologia de AlimentosUFRGS, CP 15015Porto Alegre – RSBrazil
  3. 3.Instituto de FísicaUFRGS, CP 15051Porto Alegre – RSBrazil

Personalised recommendations