Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 189–195 | Cite as

Synthesis of lamellar mesostructured phenylene-bridged periodic mesoporous organosilicas (PMO) templated by polyion complex (PIC) micelles

  • Albane Birault
  • Emilie Molina
  • Carole Carcel
  • John Bartlett
  • Nathalie Marcotte
  • Guillaume Toquer
  • Patrick Lacroix-Desmazes
  • Corine GerardinEmail author
  • Michel Wong Chi Man
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Periodic mesoporous organosilicas (PMOs), obtained by the surfactant-mediated hydrolysis-condensation of bridged organosilanes, combine versatile organic functionalities with advantages of a stable inorganic framework. Here, we introduce a novel synthesis of lamellar mesostructured phenylene-bridged PMOs templated by polyion complex (PIC) micelles (PICPMOs). The micelles assemble by electrostatic interactions between oppositely charged polyelectrolytes, with one being part of a double-hydrophilic block copolymer (DHBC), and the other being a polybase oligochitosan (OC). The PICPMO material was characterized by a range of techniques, including TEM, IR spectroscopy, SAXS, TGA and elemental analysis, which indicates that the material exhibits long-range ordering with an inter-lamellae distance of around 15 nm. Advantages of the synthetic approach developed, together with potential applications of the PICPOs, are discussed.

Scheme 1

One pot process in water, at RT and under mild pH for structuring materials using polyionic micellar assemblies.


Hybrid material PMO Polyion complex micelles 



We acknowledge Dr. Philippe Gaveau (Institut Charles Gerhardt Montpellier) for solid-state NMR experiments, and Akira Ishii and Professor Masafumi Unno (Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Japan) for their contribution to this work. We thank the French Agence Nationale de la Recherche for funding of the MESOPIC Project (2015–2019), No. ANR- 15-CE07-0005.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121(41):9611–9614CrossRefGoogle Scholar
  2. 2.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402(6764):867–871CrossRefGoogle Scholar
  3. 3.
    Melde BJ, Holland BT, Blanford CF, Stein A (1999) Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater 11(11):3302–3308CrossRefGoogle Scholar
  4. 4.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem 45(20):3216CrossRefGoogle Scholar
  5. 5.
    Croissant JG, Cattoën X, Wong Chi Man M, Durand J-O, Khashab NM (2015) Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7(48):20318–20334CrossRefGoogle Scholar
  6. 6.
    Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127CrossRefGoogle Scholar
  7. 7.
    Zhu H, Jones DJ, Zajac J, Roziere J, Dutartre R (2001) Periodic large mesoporous organosilicas from lyotropic liquid crystal polymer templates. Chem Commun-R Soc Chem 2568–2569Google Scholar
  8. 8.
    Hu Y, Qian K, Yuan P, Wang Y, Yu C (2011) Synthesis of large-pore periodic mesoporous organosilica. Mater Lett 65(1):21–23CrossRefGoogle Scholar
  9. 9.
    Yang Y, Niu Y, Zhang J, Meka AK, Zhang H, Xu C, Lin CXC, Yu M, Yu C (2015) Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery. Small 11(23):2743–2749CrossRefGoogle Scholar
  10. 10.
    Baccile N, Reboul J, Blanc B, Coq B, Lacroix-Desmazes P, In M, Gérardin C (2008) Ecodesign of ordered mesoporous materials obtained with switchable micellar assemblies. ANIE Angew Chem Int Ed 47(44):8433–8437CrossRefGoogle Scholar
  11. 11.
    Bucur CB, Sui Z, Schlenoff JB (2006) Ideal mixing in polyelectrolyte complexes and multilayers: entropy driven assembly. J Am Chem Soc 128(42):13690–13691. CrossRefGoogle Scholar
  12. 12.
    Molina E, Warnant J, Mathonnat M, Bathfield M, In M, Laurencin D, Jerome C, Lacroix-Desmazes P, Marcotte N, Gerardin C (2015) Drug-polymer electrostatic complexes as new structuring agents for the formation of drug-loaded ordered mesoporous silica. Langmuir 31(47):12839–12844CrossRefGoogle Scholar
  13. 13.
    Houssein D, Warnant J, Molina E, Cacciaguerra T, Gérardin C, Marcotte N (2017) Mesoporous silica templated by polyion complex micelles: A versatile approach for controlling the mesostructure. Microporous Mesoporous Mater 239:244–252CrossRefGoogle Scholar
  14. 14.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416(6878):304–307. CrossRefGoogle Scholar
  15. 15.
    Huybrechts W, Mali G, Kustrowski P, Willhammar T, Mertens M, Bals S, Van Der Voort P, Cool P (2016) Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material. Microporous Mesoporous Mater 236:244–249CrossRefGoogle Scholar
  16. 16.
    Hao N, Yang Y, Wang H, Webley PA, Zhao D (2010) Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption. J Colloid Interface Sci 346(2):429–435CrossRefGoogle Scholar
  17. 17.
    Mandal M, Kruk M (2010) Versatile approach to synthesis of 2-D hexagonal ultra-large-pore periodic mesoporous organosilicas. J Mater Chem 20(35):7506–7516CrossRefGoogle Scholar
  18. 18.
    Moura CP, Vidal CB, Barros AL, Costa LS, Vasconcellos LC, Dias FS, Nascimento RF (2011) Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica. J Colloid Interface Sci 363(2):626–634CrossRefGoogle Scholar
  19. 19.
    Reboul J, Nugay T, Anik N, Cottet H, Ponsinet V, In M, Lacroix-Desmazes P, Gerardin C (2011) Synthesis of double hydrophilic block copolymers and induced assembly with oligochitosan for the preparation of polyion complex micelles. Soft Matter 7(12):5836–5846. CrossRefGoogle Scholar
  20. 20.
    Shea KJ, Loy DA, Webster O (1992) Arylsilsesquioxane gels and related materials. New hybrids Org Inorg Netw J Am Chem Soc 114(17):6700–6710Google Scholar
  21. 21.
    Lin F, Meng X, Mertens M, Cool P, Van Doorslaer S (2014) Probing framework-guest interactions in phenylene-bridged periodic mesoporous organosilica using spin-probe EPR. Phys Chem Chem Phys 16(41):22623–22631. CrossRefGoogle Scholar
  22. 22.
    Zhuravlev L (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A: Physicochem Eng Asp 173(1):1–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Albane Birault
    • 1
  • Emilie Molina
    • 1
  • Carole Carcel
    • 1
  • John Bartlett
    • 2
  • Nathalie Marcotte
    • 1
  • Guillaume Toquer
    • 3
  • Patrick Lacroix-Desmazes
    • 1
  • Corine Gerardin
    • 1
    Email author
  • Michel Wong Chi Man
    • 1
  1. 1.ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
  2. 2.Faculty of Science, Health, Education and Engineering, University of the Sunshine CoastSippy DownsAustralia
  3. 3.Institut de Chimie Séparative de Marcoule UMR 5257 CEA-CNRS-ENSCM-UM, BP17171Bagnols sur CèzeFrance

Personalised recommendations