Preparation of morphology-controlled fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/magnesium oxide nanocomposite particles: development of magnesium oxide nanocomposite particles possessing a water-resistance ability
- 65 Downloads
Abstract
Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica nanocomposites-encapsulated magnesium oxide particles [RF–(CH2–CHSiO3)n–RF/MgO nanocomposites; n = 2, 3; RF = CF3CFOC3F7] were prepared by the sol–gel reactions of the corresponding oligomer [RF–(CH2CHSi(OMe)3)n–RF] in the presence of magnesium oxide nanoparticles under alkaline or non-catalytic conditions, respectively. These sol–gel reactions were found to afford the two kinds of morphology-controlled fluorinated nanocomposite particles; that is, the alkaline conditions can supply the spherical fine nanoparticles, and the non-catalytic conditions can afford the linearly arrayed fluorinated oligomeric nanocomposite particles. Interestingly, the linearly arrayed nanocomposites provide a poor water-resistance ability toward their encapsulated magnesium oxide, leading the magnesium hydroxide through the hydrolysis process; however, it was demonstrated that the spherical fine nanoparticles can give a perfect water-resistance ability toward the magnesium oxide in their particle cores under similar conditions. In addition, the spherical fluorinated nanocomposite particles-encapsulated magnesium oxide were applied to the surface modification of PMMA [poly(methyl methacrylate)] film to exhibit the oleophobic characteristic imparted by fluoroalkyl segments in the composites on the modified surface. Magnesium oxide in the nanocomposites can also have a similar surface orientational ability to that of the fluoroalkyl segments in the composites. In contrast, the corresponding linearly arrayed fluorinated nanocomposite particles can give the uniformly dispersibility toward the PMMA film to supply the oleophobic property imparted by longer fluoroalkyl segments in the composites on the surface and even on the reverse side.
Keywords
Fluorinated oligomeric silica nanocomposites Encapsulation Magnesium oxide particle Water-resistance Oleophobicity SuperhydrophobicityNotes
Funding
This work was partially supported by a Grant-in-Aid for Scientific Research 16K05891 from the Ministry of Education, Science, Sports, and Culture, Japan.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Smith DW Jr., lacono ST, lyer SS (eds) (2014) Handbook of fluoropolymer science and technology. Wiley, Hoboken, NJGoogle Scholar
- 2.Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 1, “synthesis, properties, processing and simulation”. RSC, CambridgeGoogle Scholar
- 3.Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 2, “applications”. RSC, CambridgeGoogle Scholar
- 4.Sawada H (1996) Chem Rev 96:1779–1808CrossRefGoogle Scholar
- 5.Sawada H (2007) Prog Polym Sci 32:509–533CrossRefGoogle Scholar
- 6.Sawada H (2012) Polym Chem 3:46–65CrossRefGoogle Scholar
- 7.Sawada H, Ikeno K, Kawase T (2002) Macromolecules 35:4306–4313CrossRefGoogle Scholar
- 8.Mugisawa M, Kasai R, Sawada H (2009) Langmuir 25:415–421CrossRefGoogle Scholar
- 9.Sawada H, Takahashi K (2010) J Colloid Interface Sci 351:166–170CrossRefGoogle Scholar
- 10.Mugisawa M, Ohnishi K, Sawada H (2007) Langmuir 23:5848–5851CrossRefGoogle Scholar
- 11.Mugisawa M, Sawada H (2008) Langmuir 24:9215–9218CrossRefGoogle Scholar
- 12.Kakkar R, Kappor PN, Klabunde KJ (2004) J Phys Chem B 108:18140–18148CrossRefGoogle Scholar
- 13.Jeevanadam R, Klabunde KJ (2002) Langmuir 18:5309–5313CrossRefGoogle Scholar
- 14.Bedrov D, Smith GD, Chun B-W (2010) Eur Polym J 46:2129–2137CrossRefGoogle Scholar
- 15.Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Acta Biomater 14:175–184CrossRefGoogle Scholar
- 16.Mbarki R, Madhi I, M’nif A, Hamzaoui AH (2015) Mater Sci Semi Proc 39:119–131CrossRefGoogle Scholar
- 17.Ma Z-L, Fan C-R, Lu G-Y, Liu X-Y, Zhang H (2012) J Appl Polym Sci 125:3567–3574CrossRefGoogle Scholar
- 18.Zhang J, Du Z, Zou W, Li H, Zhang C (2017) Compos Sci Technol 148:1–8CrossRefGoogle Scholar
- 19.Murray LR, Gupta C, Washburn NR, Erk KA (2015) J Colloid Interface Sci 459:107–114CrossRefGoogle Scholar
- 20.Viretto A, Sonnier R, Taguet A, Otazaghine B, Ferry L, L.-Cuesta J-M, Lagreve C (2016) Fire Mater 40:445–463CrossRefGoogle Scholar
- 21.Mbarki R, Mnif A, Hamzaoui AH (2015) Mater Sci Semi Proc 29:300–306CrossRefGoogle Scholar
- 22.Bhargava A, Alarco JA, Mackinnon IDR, Page D, Ilyushechkin A (1998) Mater Lett 34:133–142CrossRefGoogle Scholar
- 23.Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) World J Microbiol Biotechnol 16:187–194CrossRefGoogle Scholar
- 24.Heidarizad M, Sengor SS (2016) J Mol Liq 224:607–617CrossRefGoogle Scholar
- 25.Zheng L, Yu Z, Yuan K, Jin X, Feng C, Lin X, Wang X, Zhu L, Zhang G, Xu D (2017) Ceram Int 43:2004–2011CrossRefGoogle Scholar
- 26.Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Plant Pathol 65:551–560CrossRefGoogle Scholar
- 27.Pandey GP, Agrawal RC, Hashmi SA (2009) J Power Sources 190:563–572CrossRefGoogle Scholar
- 28.Manikandan S, Rajan KS (2015) Energy 88:408–416CrossRefGoogle Scholar
- 29.Itatani K, Tsujimoto T, Kishimoto A (2006) J Eur Ceram Soc 26:639–645CrossRefGoogle Scholar
- 30.Bondoux C, Prene P, Belleville P, Guillet F, Lambert S, Minot B, Jerisian R (2004) Mater Sci Semi Proc 7:249–252CrossRefGoogle Scholar
- 31.Bondoux C, Prene P, Belleville P, Gullet F, Lambert S, Minot B, Jerisian RT (2005) J Eur Ceram Soc 25:2795–2798CrossRefGoogle Scholar
- 32.Machrafi H, Lebon G, Iorio CS (2016) Compos Sci Technol 130:78–87CrossRefGoogle Scholar
- 33.Karasuda T, Aika K (1997) J Catal 171:439–448CrossRefGoogle Scholar
- 34.Choudary BM, Mulukutia RS, Klabunde KJ (2003) J Am Chem Soc 125:2020–2021CrossRefGoogle Scholar
- 35.Heidberg B, Bredow T, Littmann K, Jug K (2005) Mater Sci -Pol 23:501–508Google Scholar
- 36.Orlov AA, Chernykh TN (2016) Procedia Eng 150:1623–1626CrossRefGoogle Scholar
- 37.Choi H, Woo NC, Jang M, Cannon FS, Snyder AA (2014) Sep Purif Technol 126:184–189CrossRefGoogle Scholar
- 38.Amaral LF, Oliveira IR, Salomao R, Frollini E, Pandolfelli VC (2010) Ceram Int 36:1047–1054CrossRefGoogle Scholar
- 39.Matabola KP, van der Merwe EM, Strydom CA, Labuschagne FJW (2010) J Chem Technol Biotechnol 85:1569–1574CrossRefGoogle Scholar
- 40.del V.-Zermeno R, Chimenos JM, Formosa J, Fernandez AI (2012) J Chem Technol Biotechnol 87:1702–1708CrossRefGoogle Scholar
- 41.Sawada H, Suzuki T, Takashima H, Takishita K (2008) Colloid Polym Sci 286:1569CrossRefGoogle Scholar
- 42.Sawada H and Nakayama M (1991) J Chem Soc Chem Commun 677–678Google Scholar
- 43.Sawada H, Ikematsu Y, Kawase T, Hayakawa Y (1996) Langmuir 12:3529–3530CrossRefGoogle Scholar
- 44.Saito T, Tsushima Y, Sawada H (2015) Colloid Polym Sci 293:65–73CrossRefGoogle Scholar
- 45.Sawada H, Yanagida K, Inaba Y, Sugiya M, Kawase T, Tomita T (2001) Eur Polym J 37:1433–1439CrossRefGoogle Scholar
- 46.Chen Y-C, Tsai C-C, Lee YD (2004) J Polym Sci A Polym Chem 42:1789–1807CrossRefGoogle Scholar
- 47.Durand N, Mariot D, Ameduri B, Boutevin B, Ganachaud F (2011) Langmuir 27:4057–4067CrossRefGoogle Scholar
- 48.Miyazima T, Nakamura Y, Min KH (2016) Res Rep 66:32–36Google Scholar