Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 135–147 | Cite as

Preparation of morphology-controlled fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/magnesium oxide nanocomposite particles: development of magnesium oxide nanocomposite particles possessing a water-resistance ability

  • Yuri Oikawa
  • Yuki Goto
  • Masakazu Nishida
  • Hideo SawadaEmail author
Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • 113 Downloads

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica nanocomposites-encapsulated magnesium oxide particles [RF–(CH2–CHSiO3)n–RF/MgO nanocomposites; n = 2, 3; RF = CF3CFOC3F7] were prepared by the sol–gel reactions of the corresponding oligomer [RF–(CH2CHSi(OMe)3)n–RF] in the presence of magnesium oxide nanoparticles under alkaline or non-catalytic conditions, respectively. These sol–gel reactions were found to afford the two kinds of morphology-controlled fluorinated nanocomposite particles; that is, the alkaline conditions can supply the spherical fine nanoparticles, and the non-catalytic conditions can afford the linearly arrayed fluorinated oligomeric nanocomposite particles. Interestingly, the linearly arrayed nanocomposites provide a poor water-resistance ability toward their encapsulated magnesium oxide, leading the magnesium hydroxide through the hydrolysis process; however, it was demonstrated that the spherical fine nanoparticles can give a perfect water-resistance ability toward the magnesium oxide in their particle cores under similar conditions. In addition, the spherical fluorinated nanocomposite particles-encapsulated magnesium oxide were applied to the surface modification of PMMA [poly(methyl methacrylate)] film to exhibit the oleophobic characteristic imparted by fluoroalkyl segments in the composites on the modified surface. Magnesium oxide in the nanocomposites can also have a similar surface orientational ability to that of the fluoroalkyl segments in the composites. In contrast, the corresponding linearly arrayed fluorinated nanocomposite particles can give the uniformly dispersibility toward the PMMA film to supply the oleophobic property imparted by longer fluoroalkyl segments in the composites on the surface and even on the reverse side.

Keywords

Fluorinated oligomeric silica nanocomposites Encapsulation Magnesium oxide particle Water-resistance Oleophobicity Superhydrophobicity 

Notes

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research 16K05891 from the Ministry of Education, Science, Sports, and Culture, Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Smith DW Jr., lacono ST, lyer SS (eds) (2014) Handbook of fluoropolymer science and technology. Wiley, Hoboken, NJGoogle Scholar
  2. 2.
    Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 1, “synthesis, properties, processing and simulation”. RSC, CambridgeGoogle Scholar
  3. 3.
    Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 2, “applications”. RSC, CambridgeGoogle Scholar
  4. 4.
    Sawada H (1996) Chem Rev 96:1779–1808CrossRefGoogle Scholar
  5. 5.
    Sawada H (2007) Prog Polym Sci 32:509–533CrossRefGoogle Scholar
  6. 6.
    Sawada H (2012) Polym Chem 3:46–65CrossRefGoogle Scholar
  7. 7.
    Sawada H, Ikeno K, Kawase T (2002) Macromolecules 35:4306–4313CrossRefGoogle Scholar
  8. 8.
    Mugisawa M, Kasai R, Sawada H (2009) Langmuir 25:415–421CrossRefGoogle Scholar
  9. 9.
    Sawada H, Takahashi K (2010) J Colloid Interface Sci 351:166–170CrossRefGoogle Scholar
  10. 10.
    Mugisawa M, Ohnishi K, Sawada H (2007) Langmuir 23:5848–5851CrossRefGoogle Scholar
  11. 11.
    Mugisawa M, Sawada H (2008) Langmuir 24:9215–9218CrossRefGoogle Scholar
  12. 12.
    Kakkar R, Kappor PN, Klabunde KJ (2004) J Phys Chem B 108:18140–18148CrossRefGoogle Scholar
  13. 13.
    Jeevanadam R, Klabunde KJ (2002) Langmuir 18:5309–5313CrossRefGoogle Scholar
  14. 14.
    Bedrov D, Smith GD, Chun B-W (2010) Eur Polym J 46:2129–2137CrossRefGoogle Scholar
  15. 15.
    Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Acta Biomater 14:175–184CrossRefGoogle Scholar
  16. 16.
    Mbarki R, Madhi I, M’nif A, Hamzaoui AH (2015) Mater Sci Semi Proc 39:119–131CrossRefGoogle Scholar
  17. 17.
    Ma Z-L, Fan C-R, Lu G-Y, Liu X-Y, Zhang H (2012) J Appl Polym Sci 125:3567–3574CrossRefGoogle Scholar
  18. 18.
    Zhang J, Du Z, Zou W, Li H, Zhang C (2017) Compos Sci Technol 148:1–8CrossRefGoogle Scholar
  19. 19.
    Murray LR, Gupta C, Washburn NR, Erk KA (2015) J Colloid Interface Sci 459:107–114CrossRefGoogle Scholar
  20. 20.
    Viretto A, Sonnier R, Taguet A, Otazaghine B, Ferry L, L.-Cuesta J-M, Lagreve C (2016) Fire Mater 40:445–463CrossRefGoogle Scholar
  21. 21.
    Mbarki R, Mnif A, Hamzaoui AH (2015) Mater Sci Semi Proc 29:300–306CrossRefGoogle Scholar
  22. 22.
    Bhargava A, Alarco JA, Mackinnon IDR, Page D, Ilyushechkin A (1998) Mater Lett 34:133–142CrossRefGoogle Scholar
  23. 23.
    Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) World J Microbiol Biotechnol 16:187–194CrossRefGoogle Scholar
  24. 24.
    Heidarizad M, Sengor SS (2016) J Mol Liq 224:607–617CrossRefGoogle Scholar
  25. 25.
    Zheng L, Yu Z, Yuan K, Jin X, Feng C, Lin X, Wang X, Zhu L, Zhang G, Xu D (2017) Ceram Int 43:2004–2011CrossRefGoogle Scholar
  26. 26.
    Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Plant Pathol 65:551–560CrossRefGoogle Scholar
  27. 27.
    Pandey GP, Agrawal RC, Hashmi SA (2009) J Power Sources 190:563–572CrossRefGoogle Scholar
  28. 28.
    Manikandan S, Rajan KS (2015) Energy 88:408–416CrossRefGoogle Scholar
  29. 29.
    Itatani K, Tsujimoto T, Kishimoto A (2006) J Eur Ceram Soc 26:639–645CrossRefGoogle Scholar
  30. 30.
    Bondoux C, Prene P, Belleville P, Guillet F, Lambert S, Minot B, Jerisian R (2004) Mater Sci Semi Proc 7:249–252CrossRefGoogle Scholar
  31. 31.
    Bondoux C, Prene P, Belleville P, Gullet F, Lambert S, Minot B, Jerisian RT (2005) J Eur Ceram Soc 25:2795–2798CrossRefGoogle Scholar
  32. 32.
    Machrafi H, Lebon G, Iorio CS (2016) Compos Sci Technol 130:78–87CrossRefGoogle Scholar
  33. 33.
    Karasuda T, Aika K (1997) J Catal 171:439–448CrossRefGoogle Scholar
  34. 34.
    Choudary BM, Mulukutia RS, Klabunde KJ (2003) J Am Chem Soc 125:2020–2021CrossRefGoogle Scholar
  35. 35.
    Heidberg B, Bredow T, Littmann K, Jug K (2005) Mater Sci -Pol 23:501–508Google Scholar
  36. 36.
    Orlov AA, Chernykh TN (2016) Procedia Eng 150:1623–1626CrossRefGoogle Scholar
  37. 37.
    Choi H, Woo NC, Jang M, Cannon FS, Snyder AA (2014) Sep Purif Technol 126:184–189CrossRefGoogle Scholar
  38. 38.
    Amaral LF, Oliveira IR, Salomao R, Frollini E, Pandolfelli VC (2010) Ceram Int 36:1047–1054CrossRefGoogle Scholar
  39. 39.
    Matabola KP, van der Merwe EM, Strydom CA, Labuschagne FJW (2010) J Chem Technol Biotechnol 85:1569–1574CrossRefGoogle Scholar
  40. 40.
    del V.-Zermeno R, Chimenos JM, Formosa J, Fernandez AI (2012) J Chem Technol Biotechnol 87:1702–1708CrossRefGoogle Scholar
  41. 41.
    Sawada H, Suzuki T, Takashima H, Takishita K (2008) Colloid Polym Sci 286:1569CrossRefGoogle Scholar
  42. 42.
    Sawada H and Nakayama M (1991) J Chem Soc Chem Commun 677–678Google Scholar
  43. 43.
    Sawada H, Ikematsu Y, Kawase T, Hayakawa Y (1996) Langmuir 12:3529–3530CrossRefGoogle Scholar
  44. 44.
    Saito T, Tsushima Y, Sawada H (2015) Colloid Polym Sci 293:65–73CrossRefGoogle Scholar
  45. 45.
    Sawada H, Yanagida K, Inaba Y, Sugiya M, Kawase T, Tomita T (2001) Eur Polym J 37:1433–1439CrossRefGoogle Scholar
  46. 46.
    Chen Y-C, Tsai C-C, Lee YD (2004) J Polym Sci A Polym Chem 42:1789–1807CrossRefGoogle Scholar
  47. 47.
    Durand N, Mariot D, Ameduri B, Boutevin B, Ganachaud F (2011) Langmuir 27:4057–4067CrossRefGoogle Scholar
  48. 48.
    Miyazima T, Nakamura Y, Min KH (2016) Res Rep 66:32–36Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuri Oikawa
    • 1
  • Yuki Goto
    • 2
  • Masakazu Nishida
    • 3
  • Hideo Sawada
    • 1
    Email author
  1. 1.Department of Frontier Materials Chemistry, Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
  2. 2.Research and Development DivisionKanto Denka Kogyo Co., Ltd.ShibukawaJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations